
AD-Ai68 775 THE ROLE OF PROGRAM STRUCTURE IN SOFTIIARE MAINTENANCE 1/2
(U) GEORGE MASON UNV FAIRFRX VA DEPT OF PSYCHOLOGY
D A BOEHM-DAVIS ET AL 29 M1AY 86 TR-86-GHU-PSi

UNCLASSIFIED N88@14-85-K-6243 F/G 9/2 M

Elllliilhllll

I fl Ihfhffh•h

.2.

.5A

George Mason University

4 TR-86-QqU,-PO1

T BE Z OF PBOGAM STRD=XMtE IN SOU"M E TEkC

DEORAF A. BOHM-MVIS
ECEF W. BOLT

ALAN C. SCHULTZ
PHILIP S1hNLEY

ThI

for

Unclassified
SEC'..Rl C QASS, CON O 0 iS RAGE

REPORT DOCUMENTATION PAGE
;a REPORT SECURITY C.ASSIFICATION 1b RESTRICTIVE MARKINGS

Unclassified
.a SECURITY CL.ASSIFiCATION AUTWORITY 3 DISTRIBUTION, AVAILABILITY OF REPORT

2b DIEC.ASSiFICATION, DOWNGRADING SCHEDULE Approved for public release; distribution
unlimited

* 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

TR-86-GMU-POl TR-86-GMU-POl

6& NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If app icable)

George Mason University Office of Naval Research

6 C(. ADDRESS (City. State, and ZIPCode) 7b ADDRESS(Cty, State. and ZIP Code)

Psychology Department Arlington, VA 22217-5000
Fairfax, VA 22030

Sa NAME OF ;UNDING, SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If app icabe)

Engineering Psychology Progr mCode 442 114 P N00014-85-K-0243

ac. ADDRESS(City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK CWO NiT

Arlington, VA 22217-5000 ELEMENT NO NO NO A SSION NO

61153N 42 RR 04209 RR 042090 NR 4424 191 0.

;T. (Inciude Security Classifcation)

The Role of Program Structure in Software Maintenance (Unclassified)

S'2 PERSONAL AUTHOR(S) Deborah A. Boehm-Davis, Robert W. Holt, Alan C. Schultz, Philip Stanley

3a YPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year. MOflh,Day) 15 PAGE COUNT

Technical Report FROM 85 J -l~ro86Feb 2 May 29, 1986 96
'6 SUPPLEMENTARY NOTATION

Technical monitor: Dr. John J. O'Hare

'7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by blOir number)

rIELD GROUP SUB-GROUP Software engineering, software experiments, modern program-
ming practices, program design methodologies' software
human factors, functional decomposition; Jackson program

'9 ABSTRACT (Continue on reverse if necessary and identify by bioct number)

This research explores the effect of program structure on software modifiability. In this
research, undergraduate computer science majors and professional programers were asked to

make either easy or difficult modifications to programs. These programs had been generated

using each of three different design methodologies: in-line code, functional decomposition,

and a form of object-oriented design. Further, the programmers' mental models of the

structure of the programs they had studied was examined. The results suggest that problem

structure, problem type, and ease of modification all affect performance. Further, they

suggest that while the pattern of results is similar for professional and student

ILP programers, the exact nature of the effect depends on the group to which the programmer

belongs.

"0 :)iSTRIBuTION, AVAILAB1IUT OF ABSTRACT 21 ABSTRACT SECURITY CLASSIF=ICATION

0 (SuNCASSIFED/UNLIMITED CJ SAME AS RPr C:I< .JSERS Unclassified/unlimited
"'a NAME OF RESPONSiBLE NDIVIDUAL 22b "ELEPHONE (intclude Area Coe) 2 PC OF;,C: iY /IR0t

Deborah A. Boehm-Davis (703) 323-2207

DO FORM 1473. 84 MAR 83 APR eairon may oe used untit einaustoe SECURITv C.LASSIF'CATION O -w'S PAGE
All Otqr ea#lTonIS are ooiete

Unclassified

Ii,

.
TR-86-QIU-P01

THE R0LE OF PDOGRAM S'MJCIURE IN SOTWRE KJnU 'W

DEBORAH A. BOEHM[-DAVIS
RBERW W. HOLT

ALAN C. SCHULTZ
PHILIP SnUEY

4r

Psychology Department
George Mason University

4400 University Drive
Fairfax, Virginia 22030

Submitted to:

Office of Naval Research
iO Engineering Psychology Program

Arlington, Virginia

T'

Contract: N00014-85-K-0243
Work Unit: N 4424191-01

may 1986 A
Approved for public release; distribution unlimited. \3
Reproduction in whole or in part is permitted for any purpose of
the United States Government.

0NFDUTC

We have entered an era in which it has become increasingly
important to develop humlan engineering principles which will

0 significantly imrprove the structure of program and assist programrs
in ensuring system reliability and maintainability. To achieve this,
it is important to understand the effects of program structure on a
programuer' s ability to comrprehend, alter, and maintain complex
programs from both a theoretical and applied perspective.

Theoretialero

CIn order to understand the effects of program structure on
programmner productivity, we must consider the way in which knowledge
about computer program is cognitively represented and used by the
programmner, and the way in which program structure affects the

* construction and use of this cognitive representation.

Qoaitive revresentati. The basic facets of a cognitive
representation or knowledge structure are the fundamental elements or
entities of which the structure is composed and the relationships among
those fundamental elements (Sowa, 1984). There are different views,
however, on what the fundamental elements and relationships are for
programuers' knowledge of computer programs.

Weiser (1982) has hypothesized that programmers cognitively deal
with segments of programs that are comprised of either contiguous lines
of code or of functionally related lines of code. These functional
units deal with the same set of variables, forming a mini-program which

* Weiser calls a program "slice". Recall of programuers for debugged
programs indicated that they had stored both chunks of contiguous lines

*of code and program slices. Thus the fundamental elemnts may
-represent either a functional unit such as a program slice or a

contiguous block of code.

NLA-A : -

,1w" %"it

- Adelson (1981) studied the recall of both novice and expert

programmers for lines of three small computer programs. The clustered

recall of the novices suggested that they were clustering lines of code
, from all three programs on the basis of syntactic categories such as

"all IF statements". Experts, on the other hand, used the functional

units of the three program themselves to cluster their recall of the

lines of code. Since these three programs contained only 16 lines of

code, the size of these program corresponded to the size of the slices
discussed by Weiser.

The results for expert programmers in these two studies are

consistent in indicating some functionally-based organization of the

program material on the part of professional programmers. However,

- - Adelson's results for novice programmers suggest that syntactic

classification can also be used for organizing program material, and

Weiser's results suggest that simple contiguity can also be used for

organizing program material.

The structure organizing these basic elements of program

comprehension is generally supposed to be a basic hierarchical

structure of larger, more abstract elements subsuming lower-level, nre
detailed eleaments (Shneiderman & Mayer, 1979, Basili and Mills, 1982).
Besides the inclusion relationship that generates a hierarchical

structure, other types of relationships are possible among program

chunks, such as causal relationships between a computational subroutine

and an IO subroutine that is invoked by it.

SEffects of orocram structure. Several studies support the idea

that a program with a clear, appropriate structure facilitates

programmer performance. Norcio (1982) found that an indented form of
documentation which clarified the control structure in a program and

0 explained the functional nature of each program segment was superior to

other form of documentation for filling in missing statements.

-2-

0I

2 -. ,':a -

Similarly, Shepard, Kruesi, and Curtis (1981) found that visually
* ~eqasiing the control flow in a program structure facilitated forward

or backward tracing of the execution characteristics of the program.
Doeku-Davis and Fregly (1985) found that a high-level "resourcew type
of docuentation which eaphasized the nature and structure of the

* communication between concurrent processes in a program facilitated
modifications for this kind of coplex program.

The fact that different aspects of structure emqtasized in these
* studies facilitated programmer performance suggests that the structure

phasized by the program must be appropriate to the type of task being
performed by the programmer. As Brooks (1983) stated in his discussion
of a similar point, "Thus, a programmer whose task is to modify the
output format will be more concerned with the output statements and
less concerned with the major control structure than one who is
attempting to find a bug that is causing the program to produce wrong
values" (pp. 552-553). Since the above research indicates that the
type of appropriate structure also varies with the inherent nature of
the program, basic research studying the effects of different types of
program structures across qualitatively distinct types of program on
programmer performance is necessary.

40 The issue of program structure has been addressed in the field of

computer science in the form of program design methodologies, which
seek to provide overall strategies for structuring solutions to
computer problem. In general, these methods seek to improve the final

*program by dividing the problem into manageable parts, thus allowing

the designer to deal with smaller units which are easier to code,
verify, and modify. While some atteapts have been made to comupare
specific design methodologies with each other, these conparisons have
generally been non-experimental in nature and have not provided any

-3-

o"

K7. .K-W. L -7 . . .

general guidelines as to which methodologies (or which properties of

methodologies) result in the nrst maintainable code. Such guidelines

would be very useful for project managers.* One approach for developing
guidelines is to identify a major factor underlying the differences

among methodologies and to evaluate the effect of this factor
experimentally.

One fundamental difference among methodologies is the criterion
used to decompose the problem into smaller units. The methodologies

-. -,basically vary in the extent and type of modularization of the code.
on one end of this dimension is in-line code, where all of the

- procedures are contained in the main routine of the program. On the

* other end of the dimension are techniques which rely partially on data

structures and partially on operations as the basis for structuring the

program (such as object-oriented design or Parnas' information-hiding
technique). Falling in between these two are techniques which rely on

functions alone as the basis for structuring the problem, such as
functional decomposition, or top-down design.

More specifically, in object-oriented design the criterion used to
modularize the program is that one nodule should be created for each
object (design decision) in the program. Operations are then defined
for each object, and these operations are the only ones permitted on

0 that object. In this way, each mo~dule can be created independently
from the other imdules in the program, i.e., does not rely on knowledge

of the representation of data in any other module.

W4 In functional decomfposition the criterion used to structure the

* program is that each major processing step (or operation) forms one

*function or subroutine in the program. High-level functions or

subroutines are then further decomposed into smaller ones, each of
0 0 which represents a smaller processing step.

-4-

AE~ie r (2 J --

Program structure is important from an applied perspective due to
the potentially large benefits that could accrue to a software project

4b at a relatively low cost. This is true, at least in part, because
improved programs reduce labor costs, especially during later phases of
the software life cycle where such costs are greatest (Putnam, 1978).
Recent reports have asserted that almost 70% of costs associated with

* software are sustained after the product is delivered (Boehmn, 1981).
These costs generally are spent in mintenance; that is, modifications
and error corrections to the original. program. These figures suggest
that even small imrprovments in program maintainability could be
translated into substantial cost savings. While many methodologies,
tools, and other programming aids have been developed to produce More
maintainable software, little empirical wrork has been done to establish
either objective measures of maintainability or a particular tool's
success in producing a maintainable product.

Our recent series of studies investigating the impact of
documnentation format on program comprehensibility, codability,
verifiability, and modifiability represents a systematic, objective

* evaluation of the impact of a programuing tool (Boehm-Davis, Sheppard,
and Bailey, 1982; Sheppard, Bailey, and Bailey, 1984; Sheppard, Kruesi,
and Curtis, 1981). There is, however, almo~st a total absence of
research examining the impact of tools and methodologies early in the

* software process, such as in program design. Research done at TRW,
IBM, and Raytheon suggests that errors made early in the project and
carried on into testing and integration are the most costly type of
error to find and correct. Also, characteristics of the program

* itself, such as its comrplexity, generally determine the subsequent ease
of understanding and modifying the program.

-5-
40

_7?

In this study, program were created using each of three design

approaches. The three program design forms were straight serial

structure (in-line code), structure emphasizing functional units of the
program (functional decomposition), and structure emphasizing larger

object-oriented modules of the program (object-oriented). These

program structures were used to write programs for each of three

problems. The problems involved a real-time response system, a

database system with files, and a program construcuting large

linked-list data structures. Ease of maintenance for these programs

was examined by presenting programmers with modifications to be made to

the code and measuring the amount of time required to make those

modifications. The object-oriented modularization was predicted to be
most compatible with the users' internal representations of the

software problems posed and thus produce the best overall performance.
A further expectation was that increasing structure would increase ease

of modifiability. Thus, the in-line code should produce the worst

performance since it does not have any structure. Both functional

decomposition and object-oriented design were predicted to lead to

superior performance.

These predictions are also consistent with the demands placed on

the progranmers. The in-line code does not provide any structure to

the program; therefore, maintenance programers will need to build a

cognitive structure as they read through and try to comprehend the

program. The functional decomposition will outline modules for each

function and hence provide a starting structure to programners;

however, the programmers will be required to redefine and integrate

these functions into the real-world specifications for the problem,

which will require some additional time for program comprehension. The

object-oriented code provides one module for each real-world object, or

design decision, in the system. The data and functions associated with

that object are already integrated in each module. This representation

scheme should allow for direct translation to the specifications, and

.. thus, should lead to maximt performance. However, a there is a

possibility that the integration of both data

-6-

-- a *% o--

and functions within a mo~dule may lead to enough increased complexity

to offset the benefits that should accrue f rom increased -tructure.

These hypotheses are tested in this research.

MER

Prblm Three experimental problm and one practice problem
were used in this experiment. The three experimental problem~ involved

* a military address system, a host-at-sea buoy system, and a student
transactions list; all were written in PASCAL.

The military address system maintained a data base of names and

postal addresses. From this data base, subsets of namres, addresses,
and ranks could be drawn according to specified criteria and printed
according to a specified format. The host-at-sea problem involved
providing navigation and weather data to air and ship traffic at sea.
In this problem, buoys are deployed to collect wind, temperature, and

0 location data and they broadcast summnaries of this information to
passing vessels and aircraft when requested to do so. The student
transactions list problem involved storing and maintaining informat ion

about students through a transaction file using the data structure of a
linked list. Copies of each version of the three problems can be seen

in Appendix A.

Modifications. Two modifications were constructed for each
problem: a simple and a complex modification. The simple modification

required changing the program in only one location in the code. The
complex modification required changing the code in several locations.

&XVlemental Materials. Each problem was accompianied by five types
of supplemental materials: a program overview, a data dictionary, a
program listing, and listings of the current and expected output from

the program. The program overview contained the program requirements,
a general description of the program design, and

-7-

-71- - . . -

the modification to be performed for each program. Opies of the

program overviews can be found in Appendix B. The data dictionary

included the variable names, an English description of the variables,
and the data type for each variable. The program listing was a paper
printout of the Pascal code which was identical to the code presented
on the Or screen. The listings of the current and expected output

provided the programmners with the current output and the output
expected from a correct run of the program; this allowed them to
determine where they had gone wrong if their modif ication to the
program did not run correctly.

The experimental design used in this experiet was a 3x3x2x2

design based on Winer (1971, p. 723-736). The within-subjects factors
were type or problem (military address, host-at-Am, student
transactions) and program structure (in-line, functional decomposition,
object-oriented). Type of mo~dification (simple, complex) and type of
programmer (undergraduates, professionals) were between-subjects

U variables. Each programmner was assigned, via a latin square, to modify
three of the nine possible combtinations of problem and program design
methodology. Each programmner made either three simple modifications or
three complex moudifications. For example, a programmner might make a
simiple modification to the in-line version of the military address

* problem, the object-oriented version of the host-at-sea buoy problem,
- .and the functional decomposit ion version of the student transactions

* .problem. The order in which the programners were observed under each
@4treatment condition was randomized independently for each programmner.

0 The participants in this experiment were 36 programmners. Eighteen
of the participants were professional programners; these participants
had an average of 3.5 years of professional programmning experience.
Eighteen of the programurers were upper-division undergraduate computer

-8-

science majors. These participants had an average of 0.2 year of
professional programming experience. Programmners were solicited
through advertisements and they were paid for their participation in
the research. All of the programmners had previous experience with
Pascal.

Experimental sessions were conducted on an IBM PC. Initially, the
* participants were given a half-hour training session in which they had

to solve a sample problem. The experimenter also described the
procedure for using the text editor to modify the programs during this
session. This initial part of the session demonstrated the compiling

4 and program-checking sequence. The participants were first asked to
enter the changes from the problem discussed during the training
session. This was done to familiarize them with the operation of the
experimental system and its editor.

Following the practice program, the three experimental program
were presented. An interactive data collection system recorded the
participants' responses throughout the session. The system recorded
each call for an editor commnand (e.g. AMO, CHAGE, LIST~, or DELET~E).

* From these, the overall time to mod~ify and debug the program was
calculated by suming the times from the individual editing sessions;I
the number of errors made was also calculated. The time required for

comipiling, linking, and executing the program was not included in
* these measures. The programmers were required to continue working on a4

program until it was completed successfully or until 1 1/2 hours had
passed. They were allowed to take breaks between programs.

After successfully mo~difying the proble, the programmers
completed a questionnaire about their previous programing experience.
The information requested included detailed information on their
familiarity with programmning languages, operating systems, and program
design methodologies. The participants were also asked about their
educational background and the extent of their professional programming
experience.

-9-
fe

Following the experiment, an attempt was made to assess the
-programmers' mental models of all three problems. An interactive

- procedure was used to elicit as much of the content of the code as the

programmner recalled.* This procedure was loosely based on Buschke' s
- (1977) two dimensional grid procedure and it allowed the researcher to

develop a picture of the basic units the programmuer used to represent

the problem and the relationships among these recalled units.* Both
* number of recalled units and number of relationships were recorded for

- .analysis. The recalled units were further categorized as representing

primarily program slices or contiguous lines of code.

RESULTS

@1 £rofr.saQn Prggramme Dat

Modificati Time. The participants required an average of 33
minutes to modify each program. This represents the amount of time
studying the program, deciding on the appropriate changes to make the

* .x*:modification, and using the text editor (i.e., the total time spent at
the terminal less the time for compiling, linking, executing, and
checking the program).

An analysis of variance showed that, overall, it took programuers
less time to make an simiple modification (20 minutes) than it did to
make a complex modification (47 minutes), Z(1,17) = 128.16, p < .01.
The analysis also showed that type of problem significantly affected
the amount of time required to make the modification, f(2,24) = 9.83, p

< .01.* Overall, the military address problem required the least amount
of time (21 minutes), the student transactions list required an

intermediate amount of time (37 minutes), and the host-at-sea buoy

* ~ problem required the greatest amount of time (42 minutes). The main
effect of problem structure was only significant using a reduced alpha
level, E24)=2.60, p < .10, and it did not interact with any of the

other variables. Figure 1 shows the modification times broken down by
problem structure and type of problem.

-10-

0 70 H

1 50 i MAflDS

~40

* I1 30
wIndl

20
10 Pod ,

In-Line Functional Object-
* Decomposition Oriented

PROGRAM STRUCTURE

Figure 1: The interaction of program
structure and problem

type on time to solution
for professionals.

(p-

-11- *1

- ---. I . .-. -.I-I. --I.I

Ed itn Sessins. For programs that did not compile or
run successfully, the progrmrs were required to complete another

editing session. The numb~er of sessions required to successfully

modify the programs was calculated and analyzed. The analysis of

(15 hncomplex moiiains(.) (1,17) -9.67, R < .01. No

* other significant results were obtained from this analysis.

1~at~ gZ mtoiZaa~~a The number of commands executed
during the editing sessions was calculated and analyzed. The analysis

sho~wed a significant main effect for type of problem (E(2,24) = 14.07,
p< .01).* The military address problem required the least nmbter of

transactions (14), the student transactions list requiired an

intermediate nmbter of transactions (37), and the bust-at-sea buoy

problem required the greatest number of transactions (43). In

adition, the simple modifications required fewr transactions (15)
* than the complex mo~difications (47), JE(l,17) - 36.73, p2 < .01.

MOW1 W ii 2 . The participants$ metal mo~dels of the
programs were assessed by asking the progrmmrs to recall as many

-segmnts of the program as they could. They were then asked to
* indicate what, if any, relationships existed among the pieces they had

recalled. The number of chunks recalled, and the number of relations
expressed were each submitted to an analysis of variance. Both the
nmbter of chunks and the nmbter of relations recalled were greater for

the complex (4.1 and 3.1, respectively) than for the simple (3.2 and
@1 2.0, respectively) mo~difications (Z(1,17) -6.57, 12.19, p < .05,

respectively.

* The professional programmers recalled predomnuantly contiguous

* clusters of lines of code as opposed to program slices (t (17) - 8.37,
p < .001). The men nmbter of program chunks that were classified as

* contiguous clusters of lines of code was 9.5 while the mean number of
- program chunks that were categorized as program slices was 0.8.

-12-

i.

Ouestionnaire Data. The post-session questionnaire contained
0 Q several questions regarding the participants' programming background.

The participants in this group were familiar with an average of 6.6
programming languages, 5.3 operating systems, and 2.5 program design

methodologies. The questionnaire also asked them to rate (on a 7-point
scale with 1 - not at all and 7 = constantly) how much they relied on
each type of documentation provided. The data suggest that they relied
most heavily on the program code (6.6). They relied on the program

overviews (4.8), expected output (4.1) and current output (3.7) to an
intermediate extent. The data dictionaries were rarely used (2.3).

i-f t Tim. The student programmers required an average of
4 40 minutes to modify each program. An analysis of variance showed a

main effect of type of modification, f(1,17) = 19.67, p < .01. The
simple modifications required less time (26 minutes) than the complex

modifications (54 minutes). The main effects of type of problem
~(Z(2,24) = 5.12, R < .05) and of problem structure (1(2,24) = 5.79, 1 <

.05) were significant. Overall, the military address problem required
the least amount of time (32 minutes) while the host-at-sea buoy
problem (44 minutes) and student transaction list problem (45 minutes)

each required more time. Overall, the functionally decomposed code
required the least amount of time (34 minutes), the in-line code
required an intermediate amount of time (38 minutes) and the
object-oriented code required the greatest amount of time (49

o minutes). Hwever, there were significant interactions between problem
structure and type of problem (Z(2,24) - 3.44, 2 < .05) and between
type of problem and ease of modification (Z(2,24) = 5.07, p < .05), so
the main effect should be interpreted with caution. The nature of

these interactions can be seen in Figures 2 and 3.

inber 2f md Sessin. For the student programmers, none of
the independent variables significantly affected the number of editing
sessions required to successfully modify the programs.

-13-

" " " ° - " : , ." °"".
° .

" " " "": o -° .,' " " • .
• ° ' ° ° ' ° " • ° °

.' L
°

° . "
°

"..'.,.

7 SHAS
70U MADD S
0 TRANS

- 50
El 40

30

._ 20

10

In-Line Functional Object-
Decomposition Oriented

PROGRAM STRUCTURE

Figure 2 The interaction of program

structure and problem
S- type on time to solution

for students.

., -14-

- A- o- -, -,. . ,- . .- . .- ' -.. '- . - - . ,- , " : - -'.. - - ". ,-'--''=

• 70 * SIMPLE
::: .- 80 *Ico [PI x

o 50

-"E 40

; a 30
.~20

a 10
__

In-Line Functional Object-
Decomposition Oriented

PROGRAM STRUCTURE

Figure 3: The interaction of program

structure and type of
modification on time to

.*olution.

' :"- .. : . .:- . ; .: . -. - -: • - •- -- - . .-...- . . - -.- . , ,.. -- , -. ,-.

go Edi= Transactions. An analysis of the number of editor
transactions executed by the programmers revealed a main effect of type
of modification, Z(1,17) - 11.58, S < .01. The simple mdifications
required fewer transactions (18) than the complex modifications (35).
The main effect of type of problem was also significant, E(2,24)=

14.39, p < .01. The military address problem required the smallest

number of transactions (14), the host-at-sea buoy problem required an
intermediate number of transactions (30) and the studen transaction
list problem required the greatest number of transactions (36). In

addition, there was a significant interaction between problem structure

and ease of modification (W(2,24) = 3.82, 2 < .05). The nature of this
interaction can be seen in Figure 4.

Md Da . For the student programmers, the main effect

of program structure was significant for both the number of chunks and
relations recalled, (2,24) = 4.23, 3.73, p < .05 for chunks and

relations, respectively.

The student programmers recalled predominantly contiguous clusters

of lines of code as opposed to program slies ((17)-5.42, R <

.001). The man number of program chunks recalled that were classified
as contiguous clusters of lines of code was 9.6 while the mean number
of program chunks that were classified as program slices was 1.3.

* :. Ouestionnaire Data. The participants in this group were familiar

with an average of 5.4 programdng languages, 2.8 operating systems,
and 2.3 program design methodologies. Of the documentation provided,
the data suggest that they relied most heavily on the program code

(6.0). They relied on the program overviews (5.6), expected output

(4.9) and current output (4.2) to an intermediate extent. The data
dictionaries were rarely used (2.6).

-16-

., ,. -.,.,,,, ,--,. .,, ., ,, -. ,,,.... -,....., -.. ,. .: .. .- , . . o. .. - i- .

0 U SIMPLE
UI COMPLEX

50
ar 40

" 0 30
M ~20

0 i 10
t Zk~

In-Line Functional Object-
*. Decomposition Oriented

PROGRAM STRUCTURE
*0

Figure 4: The interaction of program
structure and type of
mDdificatiDn on number

of editor transactions

during problem solution.

D -17-

*. -. . .- * \ . '..-. * '-...'.*..-*.*--'J..*... ,, . '.,.'-'".-.:.. ." '. "" .-.-. -, '.'- .i .. '." .-*... ..-. "" ...-.- ''-..'.-'.-. .-- '---. ,.
:"" - "" A . ; * ". "J. ' . ' " :; = -" :" " :"" " "'"" '-, '" - -" "" -" " ". ,-" "

" . " I

DISCUSSION

The data provided by this research allow us to make several
interesting observations about the role that structure plays in
determining modification performance. They also provide insights into
the similarities and differences between student and professional
programiers.

The completion time data suggest that modification performance is
influenced by an interaction between the structure of the problem and
the type of problem presented. While this interaction was only
statistically significant for the student progranunr group, the pattern

- of results is very similar for the two groups of programuers. The
major differences between the two groups lie in solution speed and in
the effect of the object-oriented structure on the difficulty of the
host-at-sea buoy problem. The professional programuers modified the
military address and student transaction list problem5 faster than the
student programners, but modified the host-at-sea buoy problem in
approximately the same amount of time as the student progranmers.
while the object-oriented version of the host-at-sea buoy problem
required significantly more time to modify than the other versions of
that problem for both groups,, the effect was much more pronounced for
the student programners, leading to a significant problem structure by
problem type interaction.

For both groups, substantial differences in completion time were
observed between the simrple and complex modifications. This differenceJ
between the types of modifications was also reflected in significant
differences in the number of editor transactions for both groups of
progranmers and for the numb'er of editor sessions, chunks, and
relations recalled for the professional programrers. This suggests
that our "complex" modifications were indeed more difficult than our
"simple" modifications. This is niot surprising since the complex

modifications required changes in several locations of the code while
our simple modifications required changes in only one location in the
code.

-18-

For the student programmers, ease of modification also interacted
with problem structure. This interaction revealed that for the simple

modif icat ions, problem structure did not influence ease of

modification. For the complex modifications, the functionally

0 decourposed code was easiest to mocdify, the in-line code was slightly

more difficult to modify, and the object-oriented code was most

difficult to modify. This suggests that structure, ~r ,is not as

important as the particular type of structure.

For both groups of programmuers, there was a significant difference

in the complet ion times and numb~er of editor transactions required to

modify the three problems. In all cases, the military address problem

was the easiest, while the student transaction list and host-at-sea,
buoy probleums were roughly equal in difficulty, and more difficult than

the military address problem~.

The nature of the cognitive elements elicited in our free recall

procedure overwhelmingly favored clusters of contiguous lines of code
as opposed to programn slices, as defined by Weiser (1982). Perhaps the

relatively large scale of the computer program used in this research

made slicing of the computer program too difficult, so that our

programmners used the simpler strategy of clustering lines of code by
continguity to form their cognitive chunks.

Differences between the student and professional programmners were

* j found in the significance of the overall main effect of problem

structure. For the professional programuers, the main effect was only

significant for the time data, and only at a reduced alpha level. For
the student programmers, a significant main effect was found for the

* .time, chunk and relations data. The time data suggested that

functionally decomposed code required the least amocunt of time, the
in-line code required an intermediate amount of time, and the

object-oriented code required the greatest amount of tine. The numbter
of chunks and relations recalled was lower for the in-line version of

the code than for the functional decomposition and object-oriented

-19-

program versions, which were equal on these measures. This suggests
again that for students, structure,, in and of itself, is not
necessarily useful.

Overall, the data suggest that problem structure, problem type and
ease of modification all affect performance. Further, the data suggest
that while the pattern of results is similar for professional and
student prograniners, the exact nature of the effect depends on the

group to which the programmner belongs. This is not surprising given
the profiles of the two groups. The professionals were familiar with

- . slightly more programmning languages and operating systems while both
groups were familiar with approximately the same number of program
design methodologies. In addition, both groups of programmners reported

-relying on the same pieces of documentation, suggesting some
similarities in their strategies for solving problm. The major
difference between the groups was professional programming experience,

- - with students averaging 0.*2 year of experience (with a range of 0 -1

* year) while professionals averaged 3.5 years (with a range of 1.5 -12

years).

* .. The data, taken as a whole, only weakly supported our initial
*hypotheses. The data revealed that increasing program structure, as

represented by our materials, did not lead to increased ease of
modifiability. Overall, the functionally deconposed code was the

* . easiest to modify, the in-line code was slightly more difficult to
* umodify, and the object-oriented code was the most difficult to mo~dify.
.1 An examination Of the reports from the participants after they had

completed the experiment suggested a trade-off between program
structure and ease of modifiability. Due to the fact that the
object-oriented code was the most mo~dularized, this program structure
required more passing of information from module to module. It would
appear that the overhead required to keep track of the additional
information is greater than the overhead reduced by the increased

* modularity.

-20-

In addition, the effect of program structure on Imdifiability was
0 much weaker for the professional progranuers than for the student

programmers. The main effect of program structure was only significant
for the professionals at a reduced level of confidence. Onie possible
explanation for this result is that one skill acquired in programing

(P professionally is the ability to adapt to many different forms of
program structure.

The effects of type of problem and ease of modification were as
*expected. As many investigators have found, the three problems

differed in their overall level of difficulty. In addition, the data
strongly supported the hypothesis that changes localized in one area of
the code would require less time than those modxifications requiring

fe changes in many locations in the code.

Overall, then, the data suggest that problem structure, type of
problem, and ease of modification all affect modification performance
for student and professional programners, but that the exact nature of
the effect depends upon the group to which the programruer belongs.

-21-

* -. REFERNCS

Basili, V.R. and Kills, H.D. (1982). Understanding and documnting

program, . IEEE Transactions on Software Engineering,

270-283.

Boehmn, B. W. (1981). Software Engineering Economics. Prentice-Hall,
Inc.: Englewood Cliffs, N. J.

Boei-Davis, D. A., and Fregly, A. M. (1985) Documentation of

concurrent program. Human Factors, 2 f 423-432.

Boehm-Davis, D. A., Sheppard, S. B.,and Bailey, J. W. (1982). An

empirical evaluation of language-tailored PDLs. In Proceedings of
the 26th Annual Meeting of the Human Factors Society (pp.

984-988). Santa Monica, CA: The Human Factors Society.

Brooks, Ruven. (1983). Towards a theory of the comprehension of

computer programs. Int. J. Man-Machine Studies, 18, 543-554.

Buschke, H. (1977). Two-dimensional recall: Immediate

identification of clusters in episodic and semantic memory.

Journal of Verbal Learning and Verbal Behavior, 12, 201-206.

Norcio, A.F. (1982). Indentation, documentation and programmer

comprehension. In Proceedings of the 26th Annual Meeting of the

" Human Factors Society. Santa Monica, CA: The Human Factors

Society, Inc.

- - Putnam, L. H. (1978). Measurement data to support sizing, estimating,

and control of the software life cycle. In Proceedings of COMPODN

S'78 New York: IEEE.

Sheppard, S. B., Bailey, J. W., and Bailey, E. K. (1984). An empirical

*- evaluation of software documentation formats. In J. C. Thomas & M.

* L. Schneider (Eds.), Human Factors in Computer Syst (pp. 135 -

164). Norwood, NJ: Ablex Publishing Corp.

-22-

U"- - - ... - ."-" . .- . * . i . ' i

VV

Sheppard, S. B., Kruesi, E., & Curtis, B. (1981). T

symbolouv and spatial arran ement on the conprehension of software
specifications In P 2f the Fifth International

on Softwar Engineering. Copyright, the Institute of
* electrical and Electronics Engineerrs, Inc.

Shneiderman, B., and Mayer, R. (1979) Syntactic/semantic interactions

in programmer behavior: A model and experimental results.
* International Journal of Computer and Information Sciences, ,

219-239.

Sowa, J.F. (1984). Conceptual Structures: Information Processing in
Mind and Machine. Addison-Wesley Publishing Company, Reading MA.

Weiser, M. (1982). Programmers use slices when debugging.

Communications of the ACM1, 25, 446-452.

Winer, B. J. (1971). Statistical principles in experimental desin.

New York: McGraw-Hill.

V

-23-
9

APPEND~IX A

PROGRAM CODE

- -24-

Host-At-Sea Buoy Problem
(FunctionAl Decomposition)

F h~~uF4Ji r ,ce,.ver ,Tr -tritti.r b U Q .L~L+ .1 .rE~ ?

NUMLEer tEmp _serisors =

Numbi~er _ to vQ 5

* liFE

lop i.'
DEt A~f"A fE . j J F J N iL

END;

IC) T,pe T EAT;

k&'qcpAEt- type k qnjtr . Sc -s .o~i i i f-ii r hp

r rn - sFjL- d p e (F iEt Sow;

F 1ETE> ; Do 14011 ,Iter- tUiia I r ii
:IN TEi 3 F.

fr arso-fi Cter 1 G_ T ype,~

* ~~ 'iz~r : f- pq Lc . W3W Pe

Traismi tterspeedi Tr~tns spe;ed type;

Current reqUL-5t .ReqUest _tvpe;
Temp i, Tinmp2, CUmeqca , Wind_ speued, Wiiid-acir 1 N I E kJL-

*St.L =-~i : 60 LEA14
S~at,c. :Storacje_,tack;

FR'OCEDURFE Star t _ enaor s;
C.B I CI I

A I 0Fi TfTmpQcLJE- I t eirip i. r
TempE F Terup _ q I);

.-PSS I LiN kTeiip _.qiUQ~ U L mp III:.. L n
F.E SE F (TeInp_ q A U H

L E W L tnid _ ai _ cautcje 7
AISS] 5N (Wind d Q A Ll.3L Wl T'CCJ. 1 T
RESELT (Wind-_c luae)

G~~o 1k0ME- E It L. L Q

(7(9 Eli'LhF t -ir t t . i \'2r

k : (I-'ec E, ver

END~

UFLINCl TIiN £rnccu ng~reqUtE--t R-~qLeSt.t'~e

REt -iDLN (FR'cei ver, Iricrni nq4rE-.LI' I

-U'N-I ION 'Sense (VAR~F £)E-4vce 1 0O',vpe, INVEGER;

BE C:11

hLtLIU E: I-,LL rD~creiye. SSer- 1 ' T

EG 11-4
SE?. Se S 1

El D:

F ROC EDLJFE brod...sLt -sos;
DEG I N

WF' I I LL.N k -fr trisfrii t ter , .CE
Er'ZD

FF\@LDL4 ~.c~r~ 41rQ :INTLLEF;

W!1 Lt~c. DU.
BEG IN

Tup :. Top +

Data [TcaJp Irnaf L)
* LEND. ith

END,

PL~f I nio)
-~ END;

F F, GE L'U iE br' L.,RJ -it nio L. e'L L_ U Tfrp , _Cnmea.

W Wi n cl 9 pe CC2 * L Wi;),d dir

C.VIo Lir~ 7i, LE-3 C Wi nd J ir

E'r~~. ..CJ .. J 1 1Lt . * .

BE I N

Top Iip
END;

END-z

FU14CiT I L44 Erpt .tALk I. JjiLE;,N;

VJIuiH S-taCA DU

I F 1-o p
THEN Empt _ stic[T RUIE

ELLEmnpty . tck Fi:eLSE;

* ~WHI LE N'J Eaipt v _£LckL V. L)C

Li F DE!t ai.i 1 tv.pe Aig1 r '1 -

ELSE im L~itv-pz2-- : l 31Hj;

Fo.-p rln+ui ;
qr ~~WF I ELN ;-r crtsri t L er lo

END;

Lr OEEurq-L

COJ', U RLiqLUtS't C-A

ii r Pr L'iC. c. S d t2tcia I I OI',t2 t
shi I P r 0.' c 5 T d e t. . I 1 k t- uk; t

Soi e c. ~ AL'--E;

- -tr 1 K 1 .

L.L I LF- T.

r r- r ,rt r e'q L-'- NCJI I j ;.

14

L r ILo 'l c -c

lcmp

ks'at i mp 1 Temp i + Sense (t~ ctq

cTmpf TempZ2 +- Sense- Temtp _06LULQ

T e mpi1 Tefipi D)I1V NL~mbcr to_ avp;
*Tenp 2 = empL D DIV 4UMbOr _to- a'

St(or e f(temp'-

IF =E-corid'. MOD) k-3 = C' 1 EN

B4EGINH
Wardlo speed Sense-i (Wind .gqe
Store '.Wirno speed-,

i Wand d di r : = S E. sw rd ci _CJAuuce.

Store (Wind dir-);

IF (SeLC..nds MDIL. t. 1. = C) i EN
* - BroedcaS3Li in-to (emp I , fenipJ Grait~. idS&9'

EN4D; DU NOi ALJEF, I HIS LINEL

**Do Not al ter this lan 1 * 1. 1S UCN * F;'LiN. OL)it~Lr C LL''U'

* Eu.

WWW~rWTWWWWW V - W - _ T W-r7.- r -U w - -

Host-At-Sea Buoy Problem
(In-Line)

p FOS~rt 06 i Fxt c vt , Jr rts m I S S * M 1 4+ CJ L , D Q -1 j. nfets. 1

L, ii 4FE

:.Atur aLjE _SL tc[

R E CO0RDb

AR~~rii 01V. lt1j r 4 TEO'Er'

END;

I T yp = EAT;

FtqC4ULEst type = rkcmne, SC-, SOEOL-f, iar. .rip

1 r an~cz pL-udtype (Fast, Slow.

F 1E&T. Do' MNl cAtur t h Lt. I If U.

t) ' -1- Q 4Ii' E3Ek;
Ir arn rias t ter I WIv .e;

rkecziver- £0Tie
1 ellpo LlcT1 , i LOU qctUCI&-_ * Wi rid.-=_ euqu,

W inr d _ Cin(nlduFraa act ec I __0 _P7%vpe;

Tansaii t ter Is ped Tr anr Ee U tyVp L;

LLUr- r E; il r eqUe s t R CL4es, L t- p

Cti-r. Ss E"IL-LE_14N-;

Senis.e INWIR GLF;
inf:j I NT EGER;

- - -RE w - I , - e I 1TIP1

W rEL ICIT 4ciLC.E? w I dI:
v -S k W, rnL, i. CALQ eq trp..i

k W1~t rewe U -seu'z LJ' ..'Ju 11

aie :'vZs:)

* fri Jiz~

I C LUr r L;I t eqUeSt =- None TH EN

I F L.rind B MOI: 0 u 1' 1 THL N
BEG N

IF S~t _aic~ THEN
WRIT ELN 'Jr r~ait irter s CD.)

Temp 1 = %D.'
Tefnp.2'
FOR VAR: NUMr 1 TO Nkurriber -to-c eq DO'

BEGI '
RL"'DLN tpaueI ri'
reanlF- f.ealp 1 +
RE-viL Slnpi~cc e ne~~

END;
JErn-pl lensp DIV NUmbe-_r ,to &i,-;
Terno = ferp2 LIV NLAUCRno tz_V1
WITH St~~c DO'

BE 61 N

I ip, Top + I:
Data C op-, - r~-ep I

W1 11-1 stacA DiO

T op TLop 4 1;

dEiTHc_" L [',u

1L. lop + 1I
Data [Tcop] LJmeqj_:

E hiLij w th

L P k Lco d r,164

RLi-ADLN 'Wirnd S. OcUU- i nd. spLeE-L

BE G i N
Tup I op +- I

i C j Ecop] : Wiindsc

ENDi; W1 t
F'Ei-LL14 ~ rcc (V41(16 -j W10L no uli r
W! 1-H ELaic4 E)

Top Tc~p i
E) i-- -,D Wi rd Jd1r;

ENU ;

1P kc_-.cc,(.d s. Mb) t- I' HE
W1, LL1 irc~, iio t r ip t.

Li iD

41Z.L~~ wr, -f, trt rci-t

* r L = L - r - -i

W I- 14L1w I .. I o o

Trismtter e peE-d Slcow;
info -.- DE-a r~
Top Lip -1

WR !TEL N (Trans-,n It ter 4 I n+a.)
END;

*Sosoff Set _sos :=FALSE;

END; 2DO' NOl iLiEF ThiiS LINIE3

SDo 9 d e this i Ift' * 24A iGtkF. FLJN.LGk.) REWRITE (F) ;LC,-i-u*

0 Em W 1) s 2.

Host-At-Sea Buoy Problem
(Object-Oriented)

F'it.Fr4'-C ttizrecver- T Icarn Lter , Ft c, E--, Lt ZL: -

7'yr E 1 i LIp I E&T;

%

IYFL C&iL'Ce t pe= Temp_ T emp. 2, St C'eU I) DI tr L .iE--UC

TFt EEW ICJJ L ' WIId

WId d)J Ir Q, UQe. dMeq& de-tect

HA IN k I I m U 3S'L' LJts U U G1 e w &f I. . C; I,

"z* - C.' k5 I u14j Wi Io rp c u..UUc, Wi F~rl7

wE3 1 1 addr 14-3LLjc',

A5 Gi4 UflS&'-L4. oELect o'4TeQjA. IrF

LL

U iJL I I lLI- -a.? . De'.cv I Li 1 r4 c'

F.'L N IJ4A &.~ 4r~

L NU;

LiL

L k;

END;.

BE INW
i.,r CL aiUQE- OF

FeMP 1 CGet Q&i-Lrn~rt = c tr~

-peed GE L _4MEaE-.lr e',,en- Seiise ki ido Lp-u kwE

Di 1r Geit mecurwn S-seN.fl i
aUeL - t. M mEt' Ur a:seert = LV'! G e~u tc

END

!LL.,',,r L,iLi& z L't_ Lrn I N I E L, (EE'

oe 1L e p - -f Ei! k, :-i e i-,ir t . ~

E 1 -4.. L,

ten L* L ' tit L~C &E rtiL 1 a

FL i

ofa

W I TH St,_c_.. DOI

Too TCop 4 1;

END. witr
END

FUNCI IE C1 4 p 1iN L C F,

WilH Otac. DO

Pop : Da ta L 1 Lp 3:
Tcop :=To~p -

END;

Alt~i.. Top
El I

* ~FRDE '~' L,~LJ- C.. I' I L)~.i -'J i LrLr ; t (M~h

S~ £ i . T Lip '

Ih il HLrllFky 15 MTeMrry erl4..tv, Ti\U!C:
LLE IICJtF. -- I m ir r _P- m~p [- f E

END;

FU14C'I ILUfA mEiIILF i et h i stoLr 1 c r ecd i Ficl 1 II LFi,
LE&' I I"

L;ct -hi t 1 5 Lu cr L-&LJdir-g : p

TiFE Tr %o: SLL)*

F .Fr v iE r-s~w tfI

F- E . -I.i c v;t e

F hXEDU TRFTh4EtI TTEF.E c t, u~

r~~r rQrusN tU f-i4z4 0 aE d'ro tiduct i r-i-f o:

vk I TEhr iFrt'mi tter , GPV;U(LS- BEt_ tEfliL) 1,
GMu- E3 Ge t- teQn ip , GA k G6LS G e LG0ine Q a
G tAUU GES C-Get w.i rd~pteed, 6riUL-E& Get- wi rd di r;

LF Rm L,rT.4 i rm$ I I iLR b r c.a dc a E t..d ete o 1

W cCF 41' I PtL~iVIC\ Y -- I- £ _ rEl.Lr v emp t, > L D
*BEI EN

WF I TE~r4 T reiI asit ter ,NIEMCUF, U ttiiL Cjri-e1 ui Q)

L t L t.2U L-*t R*44*,-T YP-

L' J i L LF E I, mtzc ,' e = ij, us r'~t , ir * Eh

L r L t F, r LUL&S.4t C' reu e I- t /P

I~e Lc U. -r rE - -

rf..EUPFLEILh Evcr re~r;r

lo . l 4 ~ tj- -I t- c- t

1 - - F r-CiteD~L-& C-DLA _, k1rI~tc

tL J F1

END;

FLfi.. 1 'Nt CLU r 'rU t N L~4 L-iv'

£bEG 1 4
*-C L ..r =elJ t i iE

Dbb:

Le f r _ Ck

T~ R '-. :3 11 E i,- ar. rJE mmal I-I t eL

C.. L : i -L r Ir- L- fist f .L L 1 L(I

I~~~~ cF'Z i~ uh~ r~ rL r E C4 L.

&t.I

I' E N3D i r

NL jik': t- r t- d rt ~t).Lc

L_ rL- rC-'6 1 .r -

FL
IF L LL. CI r l t I iT.t- 1..

1L -I ''. .

- - - -2~~ -. - - - -, - - - -

Li. 4k-I

R W.~-- _ t _ I UE _::Lrr r OFeEL OF

-4i r : [F4H r-SHI I C.U FC,c 1.. c L C > E: t j

i r) I iFt Elr,:,ci ht dlL U ;
E(ND; Ccasej,

END; Ft N' b I' '-AL Er. Tri I L I N L
. e DO "iT HL [fx Ti-US3 L I a ** > S5,Ni' F, RLJ. C4

I REW4RITE(F) FCLO.,kct
E;,4,

S

00

(I•

(S5

.-

(0 . . -: : : : : .. : -: : : . , .. ., . .. = : . , , , , , , . =

Military Address Problem

F-r LI Lii,(Functional Decomposition)

ci L IriL10 1

1'F Ez

i t I'4 .1 t S- L Tr-' I NLiG 4)

LAt r 1iI xe L4iN l'

bIo Ldct2 t vyk, E-- kF 1 1 vitte, Lcrp:I ':1ia~k_ iJ 1 1i J Zct Itar L 1 t~t cii t

Capt at Ii McIc C) ei Guitr

1 tr ino It tyjL)pe

F1L.- £,-LrLutL1r L = FEJF-L'
T1i t Ie Str r i I t VL'l

La rn d. ni rti I rig.

CEl I rIl C. t I.

ILSzita, te U Iiid t r 1(ic'I

Graodt7 Li ,tUL t

E N

E iLXT; DO] Nul1 A.L i E THISZ. i11 A
L zip. h~q _- 21 p, Lip 3taltic iip_ t yp.'2

Cuw-~_ cr oo, Hicj qr tCiL , tbr adL,_!~. L i c-L C. *L'

CUI r re-CUI (1- 1~ 3'-t.I LtCUE C'-:

Lc. r + 1lie : TE&T,;'
F-r iiftLt TEX I

C Jii.1j : I N LV LrLjE iO tr.t * , L 00 .
, CorpL

ii C~ nt(_-of'i I 1'ti li t 'A

I~~~ ~ ,. -... ii i

PR OC EDU)RfFE CEowv er t lns tr- 1 nOc t c-r ziidie t vu.e
I n ;;t. r nq t Sr 1 r, 3 U t yp e
VA.R G Gr.de -type):

BEGIN
IF Ir.c-trn4 -rI vat e THEN

6 2= Friva'e
ELSE I i- Inc--rrq ='Corporal THEN

G : Corporal
ELSE IF InEt.'rrw z 'LiieuLtenj~srt ' THEN

G(: Lieutenankft
ELSE IF Inistrno = Sarojeant. ' THEN

(-3 Sa = an
ELSE IF InsLtrnQ = Cap ta61 i ' iHEN

G3 : Captain
ELSE I F lnstrrL rKo 'TE

0 : = Ma jo(r
ELSE IF IrwEtrrq = 'Col onel THE-IN

6 : Colonel
ELS;E 1i n't = erral I HE,"

(3 G (en er -ak
ELSE:

V&1ld zip Tt-:;

IF NLu I 2 k Z I4 Lj t- N . .fi y 1

FUINCTION4 Valid qrctcjc k 0 C-rd t7- e p t='E~

Val Id irciAJL r PL;

W ~~~IF NutI I kC-i INt C F r i .- ate .- 'aer-er>- tI
THr-IEJ V., I i o ecue 2 r-=E

i.. LE1 ;

RE I L 4 kF'~~~ I NFA (.-,t T-U LF L-.- .

~klf r "!I k Pr tr-.t:

1'i F N0 U L-t H L' .

IF EC F L,: 2I LL

Hii Orl NUL

oi ElS r i r-,its'r L n t t-r t-,ioi LCS L UL

WFXC L. I irr I .41' ULv CCI LA'. '0.1 7,' '. PC,..-,,

WEI V L:'\ r F r . r; -
I IL & Iao .1~ H

D- Low zJL*TL.

END
EL SE IF Hi qh _ NULL FrH LN

Hi qh_ - Low_ z;
REF A

Low Noric

WH ITE -r n tE e, E rt. er I ow L- Cr cd

V_%'! 'E I FF i t&~ G: t r Ju ETLIFIi ic.:;i fLL:
REAL-LiN1 INF L11 , Irssri rig)

Tr ELN -F 1 n t E r r-) -
IF IF. str irnQ NULL THEN.*

Lowo Pi rv ii te~
Hiah-cj Gerier~ai.

ELS~E
L ori ve r i rIstr ir IQ L d typ n (r _ sr 1r,r q

UN TI L V I id r ad e k ow- q
IF NUT k Hi ,jh (4 GLrier -1 THEN

WV , I TE (Fr i riter Ei Ler tiiqh 11-6pi~~
Wf~lI rl Rr Frn Ler ,Or-]Lknt RLI~URN ior sl1'qcie G-Kr~ltje:
F'.L,-DLN (I NFP L, In str rinq)

WR_ I TELIN i r ir)t er
I F In s tr ing =NULL fHE14

Hl rih _c L-ow-c

Conver t_1 nsr-tr i riy tu _-.r cmd. r. y.p-. ('t i rIo.

UNFI IL 'vI I id _l-?)Hl iihc

END;

F FCIL EDURF: I r-It a -,1iz E ount'r E,

F V.t L ourt.=
c) r PCUl 0oun

ZLot CLUunt

C L t COUnt K'

C .I -

iLI CLI

EFd _Ct I I ~ L*

W L.T I b,
EL .LI L. 4 4 ~

REALLN L.'-,f I I E- L ci L L rr..oll&
F%Ei-Ibl..N + Ii e G E I I -.Ac i ok
RE o2D:4 N I tI e *Er anch) .

FE Ii ' rJ t> I 1 I- coalm'=no) -

k L" D L-4 1,D ati + Ie, C Ity'

FEo-l L-W k Da t at +1 1 - S St. a t E

R 't FLN k'ata 1 .1 e, Zip);

FNIb

r. d c.- i i I c-e Tk-LIE

END;

FbqL 1 k~-w zip, Hiqlri_zl- LIP_ tVFip

L ji, -tj e , H1(1 t~ r aLdE? Gr- -A J C t\ YJID

SUr r Fe&L i-I 1' t Etr C LIt U

L- LI r- t- r ULc Z 1p- NL r i ip I -t* iND

Ade L a~ Loo . r i ali-'

CU r P&C . br U e i Oh Ot ,AdL-
* THON MTi~ces TRIUE;

Fi t. C E JI F r o c - bI ~t Lt

F'RLCELoUFE LI-cr eiiert 4rije i.LCLritE~rS LI~rtcr L~-6-_y,

C~' C-CLUIL1.1 Ll t

* -'r i , ai. L- F"Vt CCLkrit- F .tCLULrt + i

Uot p -r~ c41 C or j) : Cou i0 r :~P CJU n t i-I

0'r ge.rt t . LA.u - L +cr *1

L i e LIt t-(),i1 r1 L"L: Q u c ~n' _ fI - '(1t I- I;

I t)-:) C J C LLI N 1 1--- i 4

LC. L-Q.of L.L..I LLkl-L

A'- e*-A

E6 L N
Wi T E ki- r 1rtE-r- b n: ronit: L I r -L, i

EN U;
1 nId E:-,. ric1c

IF G-am rvir[Inde;] tlien

WkliLF (FrlintLr, Li-icd.
-N nd; Inde': TL, OFkL ('- iare. LEN.

WF'11L. (F~irE~r G I. I r Ie~2

ENDu

1 TH LLIt r _r cor ci DD
E 1~ 14

Wk!~ IL krT 1 tr ~ I tlE!, El
Wri Le qiin. n~ime (Givenr~~;
W R IT L k FrI f t E, r , 3L ni L.AE'.. fli.,,L-

WR I TELN (Fi in ter-

W R TE 1_N k Pr 1 riter , Lr- wsc to

Wi'. I TLI.1 Fr P n t&:?t* LommnJ~
WR I IELNI ?- r- i ter L Lt v t. e ii

WVN 1TELN k r I F L mr)

WF I 'ELN kd-ri tter-)
Wi I ILk -in1LLr

WF I TELIA ~F rintor I

-~ ? WR! rELN (F t ar-l.t~
El .0;

WV. 1TELI'N (P-ri r, LE--.

W\ 11LLN k Fr 1rnt L-r , ic_ tii a c~ I L) r-. ~t

WR'I TELN k ~Fr nt. er
Wk I TELtNJ Fr in L ur

w' TELL F-r- i rter ;

Lp tI-, : U~r r r ~~c.i
l.p Co.L'nt

.ip .tL'Fi. Zip C OL~rt + I j

Lt -F- t JE - ' rLLt

L t-

tVn WR1'L[(Fr 2rr lote'1 ior

END;

FOR. Thia,_yra, LUV = ot~cr TD i citir DO
IF ihij.iorade Frlvcte THENi

Fr inLthiE. s tutal 'Fr i v LA L- t L L-LU *t IrELSE IF This QraTde Co poralt THEN 4 ~ n

L ELSE IF Thi s qride- S Lea ~n F T H EN

fr i rit thi u.tot,-,1 (La ELtter-jctnL * Ll-- cuL~rr
ELSE IF T .i. in *3r de Captz*±in ihEi4

Pr r-nt -this Ltti ALpt .i r, L IzJrt
ELSE IF Thi,;i _qradu vkjcrHEN

Fri nt -- thiE - tt.,] k tri.,-c-r (' cr : r
*ELSE IF This qrai Co-iciiel THEN

F r i rL thi l tcLa,. k L.I OFLA LLi
L LS- I F- T h -cQrcjE 13; r. er-,-i HE

Fr 1art _th 1S , t 't 1 k S rireral , c -r r i~ t

ii L L: t 4

Ei t2 K , 1 1 . t c C..A L: I-

-. Lrr t- r = C I
L-L E u L .

L vi rK A Jr ' Lu 1,a p1 -', ea t~ i r ;p , L

F e--4 1 Fe, -j r d 'L~rr r ecor j, o~

~~kI ~ V)~ Fr etr-
Wi IT L ~r 1 rt er- ioL6,1 1t Z I I L. ~ >~

Fr kL Z. r rl

- L~~ rn.; .,,~r tJk- 2. .:

PqL

Military Address Problem
(In-Line)

~-i~s;Nr-L.S it ii c, Ft- irnLeir-. Irput) ; CJDLLDUG*j C,411nea±;:e:1

-~bLrin, _ 15L!-pe = LSSTf\iNG (1';;
St r i r.q tpe LSFk111

Or adE-_type = Frivt ,LroEl r -r L1 .EniL

Unfrzwr , N'one , i 1:

ZipLpe Scrinil ye

F1 i e st1Lr U L 0ur f FEt-LDR D

4~ Eu vfrfle Str 1;1u_ 4~ t
L iraric A, cLr - 1 '; t

0 z. I FtIL) t v t:

Lr e t S-jir I no ' tivpse

CoLLrtr c £Jr ir L, te

Za S trn o

C-r Efle' or Cie t pe

F TEAT; Do NOI -i lter t t.1 1:in,;e
Loaw zip. P5iir;._ Zip. Zjp_ stczr'.2 Zap-lp'
Lovi_ oreaoc- High L3r ode' I r~ T stte & 1 1 eU k c GiE tye

L:urr _recordj FJILe st r fctrrE;

Daa_4LAiale :TEAT;
Pr 1rtLer TEAT;

--vt :c n L L_ CDrp co n 1 : , i. t c: ourn ::

Lt C C r- ft L 0 p L L kt q t jL, r ~

'I c z'kp, 'v'&±i cit adr

./E

SW -
V -Fr ~ t

'A ~ i

ro i; ;o cc r.L :

cap, CyjLk'it

Luiw za ip
I~i r, at Er E.-- t cr 1 c i~ fl:. el s i c cdy,

E:h, F o~a Let C 3r JUj i~F 0u Ft I

SI4NF LI; Low a p);

Wk iI iLLN (Fr antL'r

V 1 no :; EaL-: -. hUE DE :u i a . E0D - E

I iKd zip r-i&E

E r , t er, Ernt er i L4 t Fs ,-.t ic -C.0

L r' ir-tr - or- JL'53-t REY....Ai tcir ±r Le p5 il C o(:

4e L . J . I i4(VH a c t -2 1 p

Fit rfe;: a T 0 C R0 Z) r k _,Q;% Z 1p .ErtJ DI'
IF h T tHiiqt. ij - iZ..: In L K'**

LIT1TI L zd za;

L- ~ N ~ T;rL;
L-: w .IiiHE '

L L

Haqi, r adce :=Nie;

Whak 1 (:r i n tur L EriLEr IL-ow O,- Lr ciut

1 FL F-r-ancer F,? r- - Li~ R 1T & i cr IA L L: I

N (-i~i I NFL;T , In Ltrario)

qwWF-1 ILUN rirnteri
1IL In string =NULL THEI~i

LoLiw raL -
Ha Ih at r eArje : fe~e

L.. cov£24r1
L L IEISt rJ

dueZL rorl :: Fri r t

L *L Ir li Q-t lrc4' - r r t1 ~ .

tL L it- At, ttr.inc IK It. ,tt

Cu ~ r it cirrio

r-L L IF- ir Lr- i r, L~I JC Zit'Ll

I i ftL

LLL E I r r. _ b L. r ii i rl L..04

Luvo_ ir .4de- ~ nr~
ELEL

END;
Ve' ii d _r Qr-idt TF\LL
If7 NO T (Low_ cjrU ade1N Friv a e. .Gev. era I

V HEN Vildgr.RjL :=
UNTIL val.i d _g qrade -
I F NIr kiHiqh qr ~Acj:= Genrct) THEN

Wri1E (Frinter, 'or iust RErUF.4 foDr sii-Gr4ie
R Li-DLN kINFLIT, Ir~stritiq;
WRI -rELN (F r 1n ter
IF Iri _ -:tr inq t4ULLL THLNW

H i. gh ciea L~ow _(it~C~

BEG IN
IF In-_ trirng = r ivoit I HL

hi jn L. rjr e =Fri / : tt
ELSE IF in. strarnj C Cur~.

Hi chqr-ade 2Corpo it 4

LLEE IF In .,trArfc Ee O e La i 11 r Tr L

ELSE IF In rri r. =- ~ r clL,,r. t Tr IL;

L ZE FIF li trirmnc.4 1 a T HEx.l.
Hi cirh _ r cjt Ad := CAo-

ELSE IF I n s . r 1;. 1 cjiL, .r ~ ,

Hi1 ,31 qr ade Mc jcr-

E L=E 1;: In strin c.1 LCLi urtJ.I TriL

E L SE IF 11n Stranu1 or~i r-, 1 .4.

High-qratou LUn i~-j

VYwtlidqgrade :-Ti LIFE
I F NOT (Hij cr, ir~p IN Lrx~e ~mr~

THEN Volid gr~~de "L

UN' IL Val i d _qride;

W I TH i 1-rr-record DO

jEGII

R L D L N k DaL 1 1 L Er *.r,.I

FE~L L' A t i. Stt .

U ~ L I ,

1):: t~r her t r

1)- .. a r .

A ~ ~ ~~L i .m 1) PJ~~

bLUrt r r- eco C .Ct- r cA LUL- Low u r cit-,' 14 NL

Curtr--recorn, Or aje H re THLN

I F NW-I' (Cur -rLrecur, zap = ip state) THEN
E'Eln LI i

W FNI TVE LN (Fri rt Ler-
K WI TEL N (Fr iri ter, iotAol -tor zip Z ZIp. st5 ,L&2.

WfR!T EuL.N kFtn tnet-
WFR 1 TEZ.34 F r 1 ni.er
Wf-'I 'ELN (F-vr1ntet-
Zp s t Ate :=CLr rreccrd Uzaip;

END;
tapcL~rlL Zip count + 1;

Case Crr._ re.(corc. Urade ot
FPr IVaESteL FVt CoJunt Fz ccL-u nr

C orp or.3l Co.rp _COUIc = Corp c.oukrt + 1;
Eatr qeanit L Eqt L courT- 44 Ept cotrit -r I,

L;,eu-tenlf ; L tt Cc OL cut = t counit + 1;
Ca p L.eu i L :c.p LE C it ; = Ltmp L _L ount+

Mi -;k or Nao Mc 1 -CCo Un1t Ma-- ior- _count +- 1;
Col cruel Cc Coun Gui cout + 1I
Uerjera± . Gi. -count ULen coJunt + 1;

END);

WITH Luurr record 1)

Wr- Ii F- Fr inr)ter, ±i, Iu 1-.iti

IIideC& I -.

9Wtr I It.. dr irter 61iv en rr,~ [icju-. ;
I nd e i ;d e:4

ENDj;

1F GLiveur n .,a , I nd ii I *t

* ~WRI-TE (Printer, EIr)

FUR1 Inde: Z:= Inde;: T610 GrE (G yen namne.LDui,
WFRITE krinster , GEnll? ireL'

END;
WRITE (Frinter , Eblar[Lis lflt:
WR(CTELN (Fr-rinter-
WF iTELN kPr intLr, ir anrcAt,;
WV: I TEuI4 (F-r 1r nter ,Commmrui

WIA FN1 E%-N (FrircLe r L city, , I Ei-:1 .
WRm I T ELN (F-r in ter, Count b l In i

Wk ITFL N (Fr inr) L
WR IVELIN 'Prainte r;
Wr I I LN J 'rr iteur

*WFLFCELN (Fr intei
Wk1 EL t (F r iritcr

END:

*~I V 'i L Z.F '1'U-

4' VI t.) L ,L 1 L& * u-

I.-' J! te 1 1*o14 c..
IKK~~14LcC: 1aDjm~

FF~-,Lr4 D~d 4±I. rt

RE=-pL)L.t4 k D -. t + i.1 i z COUn Ir y

FRE"DLN (1,, . 4 1L E Zip;

END
ELS~E

ENE; ~ F~E

EEND:

Wl- IE. F r i~r
ZIWr' L . i (F; i tr i &o~ r-r C1g i~t t - i OL It)

W F. I i ELN kF s- , i:e
F-L ii ~N~r I L t:!

WRI rEi-W 'Fr intel-
FCr, Tri s _ ro = LOjw.-9qri~.2 TCI Hi csh-cir ade DO'

[F Ti t F- r- I T- , HEN
WFI i'L-fA r in er * f f.t~ii + .. r Fr iv t E, is-

I-y'/t _ CQUIn)t

LLE S E Ii 111 Qr ERL Lcor .or al TH:EN
WR ITELN (r 1n ter T o (: l + or C ctrp cr A is

LUrp P C:)Lnt)
EL.I]D IF 1Yhi ;, qracue S.Arceiant I1Hki~

DL , I B:- k -rit- UL* I c-. t I -f~w c-. r r -c4F

SC C Jt n

LL LI TI L.. a rr * EcLOL Eri t HL

W ', I TE J' f- r- n 1: .- r- T ri -rt tc.ir - s i i

*.u1 :JL- t.APt-A1U H

SL.-r4 i lrsLer 70, r:ut~ +or ce 1 1

il r ,Li

C JU)n 1 1 UHI

I

I E

Military Address Problem
(Obj ect-Oriented)

-r r, ...r-'.Ii'i K~dBS kt..&Lci +i~ i nrt er, Ifput' 1 & u~t 14iir a -t

F L
U 6 cit, I- v cLsCE CC r P 0r i-d * r C1&cr t L L k ct e ia r ii.L

Unkn-vo, Nore * 1-

%rin tr ubi t * t**4l*k**9**r***

F~E R~ L U - L r1 rtt

L, E 43;

L- P LE Jtk=r 1fpUL] CL

L C- .J ZI i HIuQh Z Ip Zi I tpe;
Low _qr-dcje Ht:1hgrd Grade t*ype;

II- l" R rV.'L ttUP 1 &~f Sc i t L.r 1 Lt i a;

rt~IF~ -C m L ti ~

ii.r.: T' Yn 'IQr U

- Li .0L.t p...., L- r r !:A ip

S r~ iw L a;t

0 - 1tULC

ELS L I F Iii =trrj -r r. e r, HD

ELLE I ca t r>i Er C'iM-~ ~ 1H

ELLE I F Irt r.-Cl ie
G a2 or?

EL'LF TF rnstriici Lerer, j THEN
G Gen er I

END;

F' T 1U 14 ' Y ii j__ i Z Z ip yt P.,- 4

EE I N
v~11d:)p TPLIL;

THLN V~I _ zp

END;

I& I L) - r EuLL E

IF fj 1 k, P4 Ll-ri e. _' i-
T HE 14 V 1 U q r ii d -

Low~ z 1p NULL;

WR 1 1E (F r iriter , En er JL~I - ..A- t,, c- ,

W.- 17ELN (F r 1nter-

LNIL I ~id _ zp k Lov4i.
IF k CW s' kD _ zi = NULL) I HhE(J

i - ~i p :=NULL:

WF 1 1 E Fr ii r n tr t.-i~ r _n u hit~ii

RE#2sDLN 1[4F:: r-i .

L, r, T I L 1 1 z II't,.

*~ ~ oi wL i. ic. r

:L 1U il i lW Z LL IL1

E JE

Ir b r. I ~ L LU

L* I~: r "L_-

V 7rr'Wp 7 CCt.C -- .- v

LDVJ qradcL riat;
ht qj 6m eu ie

C onvert a r Lcr 1ir)Q toy r adne po E!t 1 eist r r c

Ui4JT IL I's t qr-ace (Low -'.ra de
IF W- uli k Hi cjh on aur enca1 1 r-Ei'

WFIIL (F r inti-Er LtE-'n high fl-,i-reuri.
W~ F.ITE i F rin t er U r- J U Zt RE IURkN fcr- ringlIe C-Gr ade:

b d P\ErWL N kI NBC] * 1 F i t r 1L r I
WFR 1 FELN r F-i
IF In ant iio NULL FH EN

H1 i q m -u LA = L-ciw-gr-ade
E L S C

LCi v er t - ,t, r, t c gra d t t'4' c: 1T Lt in E r t
H ~ r *d ke-

un 1L V oIi d yr d t ch_ rd

InC~ 1) Lng_ 1~ 1:Je 1

Ewariro S t r-@ 1 Eir-K 2,- t L)c:

Las tn Str in ri 2C tvrte
iJi -i/ tlL br my LI tpq

Ctr. tr Sr r ,-y _ 't ve

ctt cinyL

4.-'7

FLNCi ICM4 F ILE _ R in-OI.LA DJD3LE,;

V'AI, -Jr i I b bU uI. EA*4

FLUNCT ION Mletc Fes~ BUDLEAN;

IF (Curr-Recc:ord. Zip =Low z i p. AND
-L.ir ecor c. Z ip =Hi gh ;7. p) AND

(L Utr-reccw-rd. Grade Low oQrade) i 4ND
(Hji~rr reccord.Grau- H ig h q rcid)

TFHEW' Matches =TF<LJEz

END,;

EGi I N

VL r TH e c: rc r d D Q

BEG I N
REPD T

IF Title I* THE$N

PEi~' 1 NJim-l

RE.ADLN (D.&t.A 41e L a~ * L ,- T

RE~ID~rI ~ + i ~ -~

D..t~ (La I I e, LZ~mnd

REAiLLN (b at:a f 111 , C.3rade
E14N,

ELSE
LO~ile :=TRUE:

UNIIL Matches OR EO)Fi I c
IF MtchE'S AND (NOT EO 1 le

THLN> FILE F n d amaLci TRUE
EL,-Zi FILL Find (To.tLh CLE

END;
END:

~U14.,iL'-6 L. Srd i i e ~i Lr ar.&! 4 p-

LE LI C.a r t I I L t
ENDi

F NC IC FILE -ersciu = ~~nr I -

FILL ZtL'f~ IL I t I~ ' L. rr o -&'TiI

rt.i r

F ILE _ _Skrf i _C41 EA _~ t-1i 5- r c 0 V, i= L f.A

FUNC4FT 1uN F I LE __St~ev~c Dr.Ancht E.l-r ±rci ~tv E ;
BE 13 i N

FDL __ird f Ll LL Cr r t Efc-or u. br erzf
END

* F!NC i I ON i !LL- 5.ef ci Loo-mEo.d Str inrcl Ct~

C'Lr t _rt'ZI .

EINL

F tr4 C TI 10N F LI E S~ d Ci t'. S r i v,~ L4

r 1LL_ 10 -E tiitE- C01t kreLurr-n I -

E i

F I L.E __ SeiLJ CLLr't v C:ii r r r E:'L-r G Lt. r

FLINCI 1014 F 1 LE Z~ I p vp

r -ILL Str c z ip : Cr r CL or C.7Up;

END.

T W. 1 Cq4N I -C L u -d wr zoE. L;r 6 ci F- t i

IELN

!-L-...L.'U' C iL .,~ t_ w _L lI-I;rL

SNL
0.*~ * .** .- ~ .. * *. . pp. * .* ** .7

o 00

lip - : .- V .~

lk or Itbw kV 0 i - - -*-a - -0- -W 1

i- Lr r L- -- 1L r-n

g..

F- FTJ?~ LW.L Fr Fi Labcv Fl

Y I rde ekt

LLD INk

I-T r ero - , tLL L

ind: 1 1N

CL 1 r , i !L

ide a If., '. + I:

*~~~i L L-te 0. FieI~

LU1 J H4, i Len e.J '+

U (14 IL Li4Nirie Itemi>3

-E END; C i
1LE t, L ~L l vt i=f,cCi tif

WfCITLH (Fr±rtz' F ILL 1J.' tn :tiz,£i.

ucrc'r Iqi4 Fe L-i ni ti tur'J F: 1er c-eb

Wi 14 0 . F) IL L~ L Ls Icl '

Wi-' 1 1 LLLN r i Fit Ert * I L . 'Cl CC-UgF-uLri

wrf 1 L.LIA L f r i rt r * IuL-tf-0 U~. i& ' L c

Wr ±TtE..i1 ' r, i it -i

V~r t ~ 'I r i 'i t. tar'

V~~liNl '. F-0FtC

* I:I :. 4 4 i('t L

S t L -. irL. urp .. "'*

F R-FL'KhEL iPE CLI~NI I F mI i: uI Lk r, tcEIrEs

E& 1 N
P t _ C 0Unti

Ic~t C L) t

Ccl _ COUnt

E N 'D

Fi ~ ILL -5tzvd-ziF;
END;

VF FULL'rF C, 5 Urt~ 1:f--: I r.c7.r ~I t CII

Fko CCEr'RE 1-1C:r- CrMnUII t Q~ L- Uc r, t c .~ k f- C.,1.1 t tr- *r U L t 'p e

BE6 1 N
L,=E e LLuLntL.'rC of

PFri VAt E, FVt count : =Fvt COUrit + 1;

Cor por :,I : C or p c oun t -Cur-p c: coun t + 1:
Sr q & ant Sqt counFt : Sgt COUnt + 1I

L ix et enan t :Lt _COUnt ;= Lt count + 1;
Cap t in : LApt COUrt Cc(pt -'COUnt + I:

M,1 iOr Ma jOr- _COUnt :=MAJOr _ counrt + 1;
Colonel Lol _cO~init : =Co1 Lount # 1I
-erier.al G eri COunVt : 6011 counjt + 1I

END;

I IF NU 1 ((FILE Sen ip Zip_ staitc> THLIN

W~ i f ELr irtcs

W I TL.L;4 kF.rttr , Tutiti 1~r- . Zip a k-

w ', 1 1.. L LN (r- ite

wid I i LI'4 (Fr i i ect

WR I TCLN (F ri n ter

Zip istatL : FL-L W .p;

C OWc'II t : - L r- ~ t. + i

I nr CV~i2 _qr~id _ : ~n i- uE.,on ;,e

fm 4,1 .-;1 P Ir r- L. -L A;

FhOCDUTLFL Frint _tri s total
(Gi-d E LI tL i r i ~ 1 flQ Ll'

BE'o Ttal1 INTEBiEK

WR I1IELN k(Fr kn L cr L C'LI tur
KGr ad e -s u ra.n i Total;

END'

17 .-u I q
W F-:I1T E LN k Prair it er);
WFITELN (Printer ;

WRITELN (Printer;;
FOF Tt1 i~r za~e : = v U i raoc- IC Ha ii L o r tLu Lid"

I F hi's r rad J Fr1 ,a;tE? YHENi
Pr i nstt hl t. toa I Fr 1 at E P F t , &Lr

ELSE I This qrde CrporalTE

Fr i n t - tr I t LtakI C-r porc~*ur ur;i
ELSE IF Ths I ~.d Srer HENf

Pr Int tha tUJL.,i S =r -Q e' 0 t' U~ un t
E LSL IF 1*;- icr-a~e = Lett-En1 nt THEIN

Pr int t ri t u tL aI L Ie-Uterait L t CLL'flt

ELS3E I1F Ta i i sq rad =Captain [u

r1 Fint thi I t Lta &A rt i L -p t aO' i
ELSE I F True orad e Mjor IHEI J

F'r int _this _-tctcdl M or , Lc) a ur

C. -EL I.F Th i sgrad Colonelriu VH E i
f r- ant t hi t1. ti tu tr i C F

ELi-=SE IF Tr-,i G ri eiiervm± THEN4
'r int thiE:, total G bEr Er- al L, Cer fC Q knt

END;

Y.F S AT I J oot nu- :LULIL Lt-6

F :tei t; Cj: 140" HOelteLr this, line -

F I LC _ C'pr-~ t a 1 1

F-F INF~TEF V, Upern. pr in 1:r;
..AJt4TEQ i r -It a-l i 'c OUrr>'rI;

dSL -- ele c I en rr ;;

Lortan1 r :> IL C _ F ir j t~

* s CdiiI b.;' iniil 1 .p3t.;

HL bUr~a rue r L r 1,) ,Li

rLL I. :

c., ~ ~ r L ~kcL. r: -Td at

I IL L LiCS t iI %:

*' 0 ic 4C, - ter nIL a ~ *'
4

*r .

-rrr ~ ~ ~ ~ J 2.. -- -- W W -~I

Student Transactions Problem
(Functional Decomposition)

N amear rr C D.~ 6i ~inkh CI .7E OF Lr14.
SD 7= t-c F C_ E D ARF[_'(4 Y C 1.1 1 OF C H-i

*Lirid O ie

14e2 t :Li ni-

* EN ;

F : 1E I; Dc. NUT II Let t h i s. I

Fa'iei i 1±a z TEX;(

PrV rn _et- _TEAl;

L- Name)-A .0 r~-:

Srl Lilb er ILSa r- a v

F FLEDURLFE E4 I p 1 e-a_ k Hctjw mri I NTL 1 2 c.RI

Irodr INr' EGER-;

F r I lridea = 1 TO Hu.w rv
WF-ITEUN (Frinter-

END

iKLCEDL RcE V, da :I x ir> ' -d i I f-, : T

Ci- LrlrJ

i-- EL- L; ,

-aJafr. LLQL m-ti; - 7 .

E N D:

E? L.. L5 "' 1liL 4S

S , ~~~ rLIIkU 1 Lulr.- L .-


~~~~~~ 1-4.LL~~ E.Fc F C) 0'-J 1 o d bLJ IL..-i N; 1~d L ~ rd

BEGi W
Q! Fir=.t;
F r-.r I Ne.. t
FOLurid :m.-FALSL;
WHILE kF .. NiL, A ND) (NWj FL.'LtrI) [,L.

I F (F V £tUdent I ~~~ Hr4
k PSLLIa1S ii L: LLr i ty rLU mbL-r

THNFound 1 RU E
EL L.

EC I N

END;
END;

FF:C7L~uE -Sdd E-.L d~rit.

Dup .I I H~ BOULD-44,

k L iLn v

F~l:L.;CCDUF E ,AtINLn

_fep L St~ ~it ri fl

Temp . NE?;t o s+ ter -this .NeA;

A i t er -tris .Ne;.t Temp;
END;

F L11 4L 'I ION L ip t I' _ 1 i ~ t L.L-UL.L V4

IF Firs- Ne .t NIL
THEN Epy iL TRUEL
ELEE Eorptyliit FL

END;

mi. npLv I ist. THEIN

E L L

BE L I 14

I F Du t. c 1 t- THL.
1 L &I N



DLFg1ILt-Le r&L-c Or U. NL' L AJUuec

EEL I N
C'1 Firt

F F Fir st .Nex tI IF Nam~e F . SLtLkUerl naZ-me 'HEN~t
Sinert a+ ater'-;F i rst

LLSE
BEG I N

WHI£LL kNcinite F S Stuent -name; ~g
k F .Ne, t Ni1L) Doo BEGI1N F

F' U

IF Na~ Et t , P.StLideri L rer.ne
THEN Insert afte k S

END; ND".E L SE Iser t a ft er D)u

E END;l

I FRLCLDLF'E ir u

*' is cv_- i n) NF, ttr $~LtUA .Ne;

BEGG 1 N

IF 1 TEL (r r in t tle'~-er
F'eeejn .N Liem i t ro ut i .NettsNoaropdor ,

1.E N t IN

P ~ ~ ~ ~ . p CL FEIr i r e 1

d' Ci L'Etd; I i L LIU : L i r.[

r 1 1- t i-!r t r Cc. Er..j r C. , L-~

SEL i;1,
S '

Wk 1 E L 14 r r rier,i ' l', .: s Fm.. r eC: .' I

4 END
EL&_F

11 DL rP
S i I P- I inc

&i LLiI Fr r 1,' t.. F, rI re L fr '.

L)-.-



t END;

FRULEDUF E List;

C. F' Llnd

U FEt

P First .NL-xL;

WH ILE F N IL ,D

Wk! T ELN kFr inter rowvFtca-
F .Soci 1 e 1 UIv)

F' P Nae.t,

END;

FF'.GCEDLRL. Errocr

FLU IN

I n vi 10 cromo . L.. Cc tr on7 tr arlE,-.c- C I

f c- 1 a ± riQr ad

IIZ

FD LLLURkL RLe.rd it r pernmrert -aiuI

B LC- 1IN
RESET(Pr,1')

Read data line (Fermfile,

WHiLE NUT LUF (Pr mfiic,) DO

END.

L NL';.

F- F F LLLK It p ker orc L $ a i

4-3r

F : Fir st 1,e:
4 WHILE H it- Do

R- IE ir L ,



U e sc.rtJ;

F' = F .Nfe>.t;

. ElND

CLOEL (i-'er nit ile
END

EGi tN

NEW k Flrst)
First- . Ne:. t : NIL.;

SRLW ITc (Friri Ler
Re-a L inriarien v_.fi 1
R e. a i -I'at rs- i ekI AI

EDEE i r
CP* Fi t U. e a1 -i

LiE3Lir4

END;

IF NW I (Cornrnord iN L , D * I " j ]
Ti-4LE Err :.r- ;

Fa'd _ dta. lire ,'lrar =ii_);

Pv aperaI .It ile:
.n i pl ines. h i ;

WI-i FELA4 kFrlr,:cr , irar'&cationrt liae L.OmlijetfC..

U CLOS L Tr an-fi ie ;
CL. LL .t F- it er

* DO NUT a ter thi $ irf, * * .Ao> I,II F, t... , : ahWITh F : L .'s. .r

iii

'p

E .

41.

Sz



Student Transactions Problem

(In-Line)

il
T v'. I t t_.

-,T .,r r av r'-I i L' , -, [ . Li.- Lt"ICi

"" " L i i r , v = O b i L ,- ' ;

" L, 3 !ct- RLC L , T, iCUNt ic FXL L L .

6 iu L , e 1 1L e r r &i

iT E.- T

Trar,=,1ile:I+;

+ Fr-ILF+,i'- TE.T ;

C4 CoMIIdId : Ctiii*%

C.olu Tir, : I 1 E - F U
- r "t, T F U ,. rI I

Q ,U nLij ELLL Ei-i ;

E, L C'. i'4

NEW kFirst)
FirSL .Ne,,t := IL;

r.'-'."REWRITE kFr-iste-r ;

-"E3ET eF'e n+Lle; M

F OA Coly'r B] c.) D U

ey~ II

U. 1.E * s- .i4 i i'~

Ll
]']" "U :+i L2, krL' ,.e,+ , i .. L ')

-or"*-r,

• " " ;-UF L.C. L .'M+ •I -- T;_, 4 , ,

O, . L -L IF,+

..

, ri Li: 't i r L t



E LE

F FLV 0'

Li-i Lo L- Nk I I U, I beun ) '

T HELI4 FouLnd TF-uiIi:

EE >

P' P :F Np-t;

IF Fc.,.-j THEN
£L&C I N

W P\iV TEL i V rirter E,

WFk 1 icr EL ' i ntver

LIDp Iu 11 c.t E. r ec.or i rio t -cd

EL SE-

U: First;L-
F =Firsb N2L
I F 4:iI- .t FP . EL: LUdF-i it _r,-i I~n hLN

-r rIEW k(Ilemp)

-T L'fl4. . t tLidCe L 6.1 re iC 7 11

* l uci aL eAkcur 1 F Ul n~ L- 'k2 n jr

Tisi tN' F). r -

ELNE

BEG I N
WHILE ;,Ne F- SLILILdtrW rL~w

F C) NE-:t;
END;

I F Nc f-i F S EtUoC)E-r. rainy 1 t2 4

BEGS 1 N

br NE(1 Li'

N Lr~ *J k L- o F, pc e : i

Fehin . roc si iecr it'

- e . F *e

Fi73R olumn L Z)

*~IT Ch L~i

NEn ei



C, i ll l 1

END;
REHEUN; (F ernt±i

ENE;
Ui..U0flL P ermt tI ,:

kt~ i r '- iI

ZL,:, (I rW, u n? 7j, c, F

L 4 T LL.,' - 1

PUN~~~~~~~ Luuin :-I> 1 i,[,

f-u--~ U$4 r~1 6 r,

.. ,~~~H~ FUU2 4...LUi( -- .K2 -

lU.Al

-~ L o* L E.T~- C-r

itr fit-<

e MLU U C

FZ.. -. - T 26,-L U



W i I L L NE&OIE F E. t u f o t r.I&;tlC)

V I4(lqD %F *w.L I'b

IF Naame F . tbrtrieTHEN4

I em .r L't u u e rt name
Terp .oIalscrt

fTemnp . Ne..t =F' No L.
F .Ne:.t- effap;

NLW (I cap).

Temp .Soc1llsecurity/

E' N L,

END;

FUUF) First; .

F F S,-=n Fir-si:t .Ne-wot;

V F Fun -KL
40 ELL

FFE 3 1 N

F F .Ne. t;

IF Fuor, t-4

UC, . Nco , t F, . Ne; t

WEI 1TCLN F,4 r ritur)

WF- 1 LL!N (Fr 1in
:.tL U Ci rt rc 1 r- -I LIi

END:

P F- ; - Fi

r[i 1  h~-

IFL

LV L1L r4

I qv z



1IF FOlind TI-SN
BEGI N

WRI1TELN kFr init er

WR I TELN kF'r r;nt e r H nsmc
as ain ttm r ecw rd )

END
ELSE

W RI T ELN ( Fr i n cer
WF I T ELN Ft- i n LEr, Nm

as NOT i c tr,- r Ecc-..r d
END;

END;

UFirst;

WFJITELN kF'rin)Ler)
WHILE F * NI1L D)O

BEGI N
WF< I TELN (PFr anF ten , F, . 5t LUCI r

END;

I F NW Joamnard IN W P' L I , 3 liLk

Wr1 EL N (F;r iter;
WFI L kl PF'r I te r

I ' - 1± r 1.i rBO ed .r ti

END;
F- EL,(i as I C Jomarcud

FELL T1r ars fa i e, 01K:

EN D;
FOP LOl Lmn~ = 7-7 TO 4',L DO

REk-T' k Tr arsi 1a1cE, L'
S nk..mber- LJulC;mn - Usl I C- h;

FE P- 1 LN r fr a r 1 1 e

@4~~~~ LLCJ? Dl~s~i

RE W II \Fermtn ie
C, Fir st;
F = F i f; a.

*Wi. ITLL-i4 i'J ~ rmrY-i Lc tzicCJ"lI t I

*~~u. ThL er i t y

C L -i-

k 1 'rervFrti r)i- er
ELL.N 'F a 1 or ', W-L1 C1111&

~ L u, kr~

kLU ciir thi s j1l~ 1 4 rZ.tLN' W L~ ;i ~ ;.

EI



Student Transactions Problem
(Object-Oriented)

T r, E, i

£2 t pe F4 LED rARF-n4 £1 -7 11 OF LHA.;J

F lEAT; ', Do NUI altezr tti±sz liari

£3. nsu iiba £3 t vpe

F ur I ~ L G F

Fr 'rste TCYJI it

Lard - L 'ik

F~e F.C )L ,L SLL ,L1L ;r

LE1D;N

vf~~t~ 15,Fc

[iL L N E

5~~ .. :. .- . .. .'& .:
r. 'd 'e



NLW kFa rst

L'uplc aSLdE, L~~LJL-I~

&ni L J iJC r, puC.

Tep M Ut.-

T~~ ei v 5rj i i
Tiop . N e,t L Ne-it t1 f L.-

i r4i c

ii-- Eupaciet-e tTIH IP

Inir-L att r- Firsit)

LL -- ' E ~: *r

E- E'lc:;t I i.d r. rL

I F LILIP I LL . U
Wr-i t e r, k iL r. ~ ne t er DL.. C t r-E~ tc n-, d Nu d

DE&~c I

f N -t ,- F~T ti Li t., -.. IH

-r 11 E 4L k Nom I~ A t n r F

- N fT ;i . r, F

.,*4. ..I



-kLLLE L II L. Dr c, tUp stuoer t

F rec eed i r-q , -ic L~ Lit.!

IsiCthere :

EEL& Ii
beerch ~ th E it tLre F ee r-,C4.ritcj

I F I s i t thee THELN
0. Cr eEedaJ rI F. q .N- : -CtuU1 P.

Wr- i t e J Fr irta-r
bLtUJL~lt rcLt 1; c~ I~du

E AZ

0

Fi UQ--ElLE Lliiflrur

4t r Li i

Ctl k F FUl

i F r Luika .HLi 4

I~ . t- e.1 F r I r. er a s N T 1 t

EtC

F irt .Net;
Wi ata-Ei r, Fr iriLE )

WH ILE N NIL D u
EuIL

4Jr a teli r, FPr 3 rt.- f .r Ftjc v O--le.

LL;

i~I Fp iz- NILG

THEN NLt C-1111 - i t

E L.E Not f er .- -i-iL



1 FQLUELIT- Uc:t ne-. t _ -tders L r4V Nt.Efj- teAN)

I F F NIL:
THLN,4 Nolt ernpty ' p 4

ELELC 11-3t emap ftv TRUEI

END; P - kgv -0

-HF .t*.a Dr-.PC -.Ll

F rC LUELUrL Red ct.5 1riL

Ch :CH '4,.

FF6 I N
R Eg A J Tr i r. { 1 1 eq L Li. l r I d'

F OR C U 1Unr. T0610

kEU L) T r n~b i C; I
Na akr EC oi u mn -- 1i 3 Cii

FOR LkLi, -7:7 TO 4-,LA bu
-E L I N

W :a r;'r01 ~ E~n 'Jiri T n t

F'E 1 FL I1 N I

L ISL I dr~srr
L eIc Sp~j~ I irt IJE

LE IN' irE

L L T LA i Ij



rt HE W . i. - r nt c -

r. iAl I1 d Cc ~~ C: 1 r fc: 1 cjr.r L*

Re ad cat& -1 ine;

E N L:

*~ C,

C-.. .F u I E E C--C C_ ir m t . I Iira-

C ct: CH-i N~tt TEDER;

FEA l L' tUker m ti~ 1 E ,C:

ELLUIN
R E&.l. ) k Per mi 1 1 e, C i
Name L ClajI mn -I Ch;

RUBF CcAlUcn :=r 7 IDC 4' Z, u

R E D (F er mf Ie . CU,

E N4D:

!:EZ.L F kr Fl 1 iIE

ta ku 'u4

WFIT j: j Ni £r J. at xI c' L
LLI It.i

F J L-' d> t. Cii 1Lr ;

Lt I L

'.ft.LU)L r 'a ' lt j. 1

ft fP .T I fI

bt o. "p- 

f t t t.f t

lift& "-ffftf.f , -f-t t ~ . . f



IIIco e 1 e-it BLILE, 1N:
ScUder't namc : N.kare - t'9 pcl;
SOcia1 s .- curatv 0, tvpe;

FEWF 11E (F erm-TaliIe,
L IS-;I _ba to.tropo_::+ _list (More_ lert';
WHILE More E,+t. DOj

L LIST __ bet -ne' t -stUdei t uIic..r ti 1er
Wf-"1 1ELN '. Ferm + 1c 1 eaic

Et'44D

CL LELIN ~i iI

* L .0zf itaiia*e0 otr

FE '-- IL -- t.~ a a1ipernieaie1:

- 1 Ri-iSF IL.E P_ Froc e3 Ia: B arns tile
-~~~ F El 1 LI-' L r ej w .cfi- 1L

Wr jWein kPr i nte ri
~Wr t tIn F r e, I rft& ci at.I Cir tal e. C L.nyie t E-J

xDo NULTI-- tler thi h 111n& ot N -LabhFP R u 14C'r F. FW F1T E F ;LL SLC
END.



'9i'

0

APPENDIX B

PKOGRAM OVERVIEWS

I

S -73-

I , . 'q



A= ,

•PFCp OVERVIEW

Host-At-Sea Buoy Problem
Functional Decomposition - Simple

This program was designed to simulate a real-tine system. It
* concerns a bouy which provides navigation and weather data to air and

ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS. It will broadcast this SOS every 10 seconds until it is

* turned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Omega (i.e. location) - every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.

DESIGN

This program was broken up into 8 nodules. The min process of
the program reads in the measurements taken from the five gauges,

* •processes requests received through the receiver and subsequently
directs the data to be broadcast by the transmitter. Five of the
modules are the processes that take measurements from these gauges.
The other two nodules are the receiver and the transmitter modules.

4. WMODIFICATION4

It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in a ro and average the tw readings to obtain your reading.

r

. -:,. ..' -/.,..- _- , .-.- , . .- .. , ... .-.. . . . .... ,,.,.,.. .. ,,.. ... ,.,,.o..,., ,,.. .... . . . . .... .,,.. . ,. . . . .... . .,, '._.a-,.__ ,.



PRGRAm aVERVIEW~
Host-At-Sea Buoy Problem

Functional Decomposition - Complex

R=RQUIRTS

This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
informtion whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS. It will broadcast this SOS every 10 seconds until it is
turned of f by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken

* from the sensing devices at fixed intervals: wind sensors = every 30
secs.*; Omega (i.e. location) = every 10 secs; and temrperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.

DESIGN

This program was broken up into 8 modules. The main process of
the program reads in the measurements taken from the five gauges,
processes requests received through the receiver and subsequently
directs the data to be broadcast by the transmitter. Five of the

-. -. modules are the processes that take measurements from these gauges.
The other two modules are the receiver and the transmitter modules.

MODIFICATION

If the temrperature and wind speed guages have some sort of error
(mechanical, electrical), the circuitry associated with it will return

-: the integer 999.* If the temperature guage returns 999, you should n
count that figure into the average for that averaged reading. (In
other words, do not add 999 to the accumulator, and subtract 1 from *

it ~ T_.-AVG.) If the wind speed guage returns 999, continue reading the
guage until you get a reading other than 999.



PFI)GRAI4 OVERVIEWJ
Host-At-Sea Buoy Problem

In-Line - Simple

REQUIRENTS

This program was designed to simulate a real-time system. It
C0 concerns a bouy which provides navigation and weather data to air and

ship traffic at sea. It collects wind, tenperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS. It will broadcast this SOS every 10 seconds until it is

*O turned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Omega (i.e. location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.

DESI(

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,

4P however, in that it does not contain "GXM's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

47 It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in a raw and average the two readings to obtain your reading.

q'

4 0



lrnf4 - C - W -

PEGRAM OVERVIEW
Host-At-Sea Buoy Problem

In-Line - Complex

RE.UIRENrTS

This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS. It will broadcast this SOS every 10 seconds until it is
turned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30

[ secs.; omega (i.e. location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.

DESI(G

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,
however, in that it does not contain "GIO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MDIFICMION

If the temperature and wind speed guages have some sort of error
(mechanical, electrical), the circuitry associated with it will return
the integer 999. If the temperature guage returns 999, you should no
count that figure into the average for that averaged reading. (In
other words, do not add 999 to the accumulator, and subtract 1 from #_
. AVG.) If the wind speed guage returns 999, continue reading the
guage until you get a reading other than 999.

*1'

,:,. \*:



S PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
Object-Oriented - Simp~le

REWIUIEr~S

This program was designed to simulate a real-time system. It
concerns a Host-at-Sea bouy which provides navigation and weather data
to air and ship traffic at sea. It collects wind, temperature, and
location data, and transmits summaries every 60 seconds, or more
detailed information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS signal every ten seconds; (a separate request will terminate

0 it). Each bouy has a smll comp~uter, 2 temperature sensors (each one
at a different depth), wind direction and speed gauges, a location
detector, as well as a receiver and a transmitter. Sending an SOS is
considered of highest priority, then air and ship requests,
respectively, and lastly, the periodic transmissions. To maintain
accurate information, readings are taken from the sensing devices at
fixed intervals: wind sensors = every 30 secs.; Omnega (i.e. location)
= every 10 secs; and temperatures = every 10 secs., (5 readings are
taken and averaged so to get an accurate determination at each
depth). Each sensor reading returns an integer value. Also, the baud
rate of data transmission varies depending on whether ship or plane
request due to time limits of the craft in the vicinity.

DESIGN

This program was broken down into six main sections. The first is
GUAGES, which contains all the sensor functions which will read the
gauges so measurements can be taken. Second is KMIRY, in which all
of the data taken from the gauges that will be later broadcast is
stored. RECEIVER accepts current requests for data from passing
planes or ships. The TRANSMITIER sends data periodically to any

*vessel which may be nearby, and sends detailed data or an "SOS"
signal, when requested to do so. The fifth section of the program,
CLOCK, simulates the passage of time so that the appropriate readings

Us may be taken at the proper intervals. Finally, the MAIN PRO)CESS
controls each of the other sections, beginning them, processing the
information which is accuminulated in them, processing requests, and
directing the transmission of the data stored.

MOIFICATION

It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in a row and average the two readings to obtain your reading.

(W



PFDGRAM OVERVIEW
Host-At-Sea Buoy Problem
Object-Oriented - Complex

REQUIREMENTS

*This program was designed to simulate a real-time system. It
concerns a Host-at-Sea bouy which provides navigation and weather data
to air and ship traffic at sea. It collects wind, temperature, and
location data, and transmits summaries every 60 seconds, or more
detailed information whenever requested by a passing plane or ship.

*-" Additionally, in the case of an emergency, it may be told to broadcast
an SOS signal every ten seconds; (a separate request will terminate
it). Each bouy has a small computer, 2 temperature sensors (each one
at a different depth), wind direction and speed gauges, a location
detector, as well as a receiver and a transmitter. Sending an SOS is
considered of highest priority, then air and ship requests,
respectively, and lastly, the periodic transmissions. To maintain
accurate information, readings are taken from the sensing devices at
fixed intervals: wind sensors = every 30 secs.; Omega (i.e. location)
= every 10 secs; and temperatures = every 10 secs., (5 readings are
taken and averaged so to get an accurate determination at each
depth). Each sensor readi,, returns an integer value. Also, the baud
rate of data transmission varies depending on whether ship or plane
request due to time limits of the craft in the vicinity.

DESIGN

This program was broken down into six main sections. The first is
G AGES, which contains all the sensor functions which will read the
gauges so measurements can be taken. Second is MEMORY, in which all
of the data taken from the gauges that will be later broadcast is
stored. RECEIVER accepts current requests for data from passing
planes or ships. The TRANSMITTER sends data periodically to any
vessel which may be nearby, and sends detailed data or an "SOS"
signal, when requested to do so. The fifth section of the program,
-CXO, simulates the passage of time so that the appropriate readings

may be taken at the proper intervals. Finally, the MAIN PROCESS
controls each of the other sections, beginning them, processing the

,*- "information which is accummulated in them, processing requests, and
directing the transmission of the data stored.

MODIFICATION

*..,If the tenperature and wind speed guages have some sort of error
(mechanical, electrical), the circuitry associated with it will return
the integer 999. If the temperature guage returns 999, you should not
count that figure into the average for that averaged reading. (In
other words, do not add 999 to the accumulator, and subtract 1 from #_
T1*O AVG.) If the wind speed guage returns 999, continue reading the
guage until you get a reading other than 999.

° -. ". °.

°A% t lA"l Aa. * - . * .-



PROGRAM OVERVIEW
Military Address Problem

Functional Decomposition - Simple

REUREM~MNS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Comnand or Activity, Street or P.O.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line l]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
(5]Country Postal Code.

DESIGN OVERVIEW

This program was broken down into 2 primary modules. The first is
* the data file which contains the records to be examined. The other is

the main process which examines the data for matches to the input
criteria specified by the user on the terminal.

MMIFICATION

The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.

EXAMPLE:

Lt. George Smith
Air Force
Bolling
1234 West Street <- this is the new line added
Washington, D.C.
22303

o

o
.



PROGRAM OVERVIEW
Military Address Problem

Functional Decomposition - Complex

REUIRER S

This program is designed to search for and print the addresses within
a certain Postal code area, and/or to do the same for the addresses with-
in a certain O-Grade, (the numerical representation of an officer's
rank.) It also keeps a running total of the number of labels printed out
for each zip code and a breakdown of the number sent to each rank within
that zip code. In the database, addresses follow one after the other,
each in a separate record, and can be read in as records. The records are
sorted by zip code, and, within zip, by grade. Each address consists of
11 fields, each field on one line, which follow sequentially, in the
following order: Title, Last Name, Given Names, Branch or Code, Ccniand or
Activity, Street or P.O.Box, City, State or Provinvce, Country, Postal
code, O-Grade. The output format for labels is: [line l]Title Given
Names Last Name [2]Branch or Code [3]Command or Activity [4]City, State
or Province [5]Country Postal Code.

DESIGN OVERVIEW

This program was broken down into 2 primary modules. The first is the
data file which contains the records to be examined. The other is the
main process which examines the data for matches to the input criteria
specified by the user on the terminal.

MOD)IFICATION

The name line currently prints the person's title, given names, and
last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th field) is
now in the data base, but the program neither recognizes nor uses this
information. This field is a Boolean that represents whether or not the
person is retired. This field should be incorporated into the program so
that this field can be added to the name line as the first item to be

* printed. With this modification, the output would be as follows:

Colum: 1234567890123456789012345678901234567890
If Retired:
Retired Lt. Alan C. Schultz

If Not Retired:
Lt. Alan C. Schultz

e

*4.

"- .,..> 4 . . . . . .
. . . .. . . . . . . . . . . . .



rr -_ . . , . - -¥ - .. .o U .-- .-%-----.-- fl . , ~ . - -° - W - - -' .4 - . ~. w. -- -

PROGRAM OVERVIEW4Military Address Problem
In-Line - Simple

R:EUIREMENTS

o This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read

* in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.O.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line l]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[5]Country Postal Code.

DESIGN OVERVIEW

This program was written entirely with in-line code such that all
code is included in the main program. There are no modules,
procedures or functions, although it is structured in that it does not
use wgoto's", but rather controls flow by the use of "while,"
"repeat...until," "do" loops, etc.

MODIFICATION

The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.

EXAMPLE:

Lt. George Smith
Air Force
Bolling
1234 West Street <- this is the new line added
Washington, D.C.
22303

'V

. ...
. - . .



P1RJGRAm OVERVIEW
Military Address Problem

In-Line - Complex

REUIREMqE~1IS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain 0-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.O.Box,
City, State or Provinvce, Country, Postal code, 0-Grade. The output
format for labels is: [line liTitle Given Names Last Name [2]Branch
or Code [3]Coumand or Activity [4]City, State or Province
15]Country Postal Code.

DESIGN OVERVIEWJ

This program was written entirely with in-line code such that all
code is included in the mwin program. There are no modules,
procedures or functions, although it is structured in that it does not
use "goto's", but rather controls flow by the use of Owhile,'
repeat...until, "do" loops, etc.

MODIFICATION

The name line currently prints the person's title, given names,
and last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th
field) is now in the data base, but the program neither recognizes nor
uses this information. This field is a Boolean that represents
incorporated into the progra so that this field can be added to the

whethfer s rno the perso iseted. Thisg fiel sof enm ro

sam lie easthe ank ite tW iid. ith this modification,
folho oput uld be as follows:

L Colu~mn: 1234567890123456789012345678901234567890
If Retired:

Retired Lt. Alan C. Schultz
If Not Retired:

Lt. Alan C. Schultz
-4. dlr

[t IiiGvnNms rnho oe omn rAtvtSre rPOBx

•. Ciy tt rPoicCuty otlcde -rd.Teotu



* PROGRAM OVERVIEW
Military Address Problem
Object-Oriented - Simple

REQUIRENrS

* This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.O.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line l]Title Given Names Last Name [2]Branch
or Code [3]Comamand or Activity [4]City, State or Province
[5]Country Postal Code.

DESIG OVERVIEW

* This program was broken down into three main sections: the file
object, which contains the records to be examined; the label object,
which formats the information to be printed on the labels; and the
main process, which controls all operations on these objects,
temporarily stores and passes information, and reads input from the
terminal

6

MODIFICATION

The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.S

EXAMPLE:

Lt. George Smith
Air Force
Bolling
1234 West Street <- this is the new line added
Washington, D.C.
22303

S.

* .1

*#~ c~.



- " " - .o _ • . ° . . . , .. . . . . . . .

PROGRAM OVERVIEW
Military Address ProblemObject-Oriented - Complex

REQUIREMENTS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.O.Box,

" City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line l]Title Given Names Last Name [2]Branch
or Code [3]Command or Activity [4]City, State or Province

E* [5]Country Postal Code.

DESIGN OVERVIEWJ
This program was broken down into three main sections: the file

object, which contains the records to be examined; the label object,
which formats the information to be printed on the labels; and the
main process, which controls all operations on these objects,
temporarily stores and passes information, and reads input from the
terminal

MODIFICATION

The name line currently prints the person's title, given names,
and last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th
field) is now in the data base, but the program neither recognizes nor
uses this information. This field is a Boolean that represents

[ov whether or not the person is retired. This field should be
incorporated into the program so that this field can be added to the

- -. name line as the first item to be printed. With this modification,
the output wuld be as follows:

' Column: 1234567890123456789012345678901234567890
If Retired:

Retired Lt. Alan C. Schultz
If Not Retired:
Lt. Alan C. Schultz

hi.°%

Jo."

",'.T .t. .... .. .. t...a . t.. o..sa .'t. 7 0- A - A . . - A - .- -



PRGRAm OVERVIE1
Student Transactions Problem

Functional Decoqposition - Simple

RBQUIREMENrS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanentIs file) the name and social security numrber of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number. The commands are: 'A' = add a student in the proper
alphabetic location, "D' = drop a student, 'I' - inquire about whether a

* student is enrolled, and VL = list all students. WA, 'Do, and %V'
require a student name and social security number; 'L' does not. The
format of the permanent file is: [colun 1] blank, (column 2-361 name,
[colum 37-451 social security number. The format of the transaction file
is: [columnn 1] command, [column 2-36] name, [column 37-451 social security
number.* In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Onxce the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

This program was broken down into three primary modules. The first is
the permanent file which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file, which consists of all requests of or alteration to the
list which need to be done. The third module, the main process, actually
perform the operations.

MODIFICATION

The following should be added to the output. when doing the VL
commuand, count the numb~er of students, and after all the student names

4 V have been printed, print the total number of students using the following
format:

Colum 123456789012345678901234567890
Last name in list

Tobtal students:

*indicates that the integer value associated with this total should be
printed starting in this columni.



PF40GRAM OVJERVIEW

Student Transactions Problem
Functional Decomposition - Complex

REQUIREMENITS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order).* Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number. The commands are: 'A' = add a student in the proper
alphabetic location, "I = drop a student, "I' = inquire about whether a
student is enrolled, and ''=list all students. 'A', WD, and "I'
require a student name and social security number; 'L' does not. The
format of the permanent file is: [colum 1] blank, [column 2-36] name,
[column 37-45] social security nu~mber. The format of the transaction file
is: [column 11 commnand, [columni 2-36] name, [column 37-45] social security
number.* In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main meexry. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

4 DESIGN

This program was broken down into three primary mo~dules. The first is
the permanent file which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file, which consists of all requests of or alteration to the
list which need to be done. The third module, the main process, actually
perform the operations.

MOIFICATFION

The permanent file now contains some additional information about the
class of the student (freshmian, sophomocre, junior, senior, graduate).
This information is contained in columni 46 of each record in the permfile
as a number in character format.

1 = Freshmnan
2 - Sophonure
3 = Junior
4 = Senior
5 = Graduate.

Change the "L' commnand so that when it prints the student list, it prints
the number representing class medoership immediately following the SS

* - number (i.e. with no spaces between the two.) In making this
modification, remeber that the program should read in this new
information and preserve it for use in the transactions.

Column 12345678901234567890123456789012345678901234567890

examiple:
Anderson, Harry 0099811231

This is the numer rere
senting class membersnip



PIEGRAM OVERVIEW
* Student Transactions Problem

In-Line - Simple

REQUREMN2IS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the

* permanent file) the name and social security numbier of each student
enrolled (in alphabetical order). Each day a transaction file is
created which contains a commnand followed by, when needed, the
student's name and social security number. The omands are: 'A'
add a student in the proper alphabetic location, "D)' = drop a student,
"I' = inquire about whether a student is enrolled, and 'L' = list all

* students. "AltDW, and "I' require a student name and social
security numrber; 'L' does not. The format of the permanent file is:
[column 1] blank, [column 2-36] name, [column 37-45] social security
number. The format of the transaction file is: [column 11 commnand,
[column 2-361 name, [colun 37-45] social security num~ber. In each
case, the social security numb~er is written without spaces or
hyphens. The program reads the permanent file into a linked list in
main memory. it then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,
however, in that it does not contain "GlYIO's", but rather controls
flow by the use of "while," "repeat... until,3 "do" loops, etc.

MOIFICATION

The following should be added to the output. When doing the 'V'
cormmand, count the numrber of students, and after all the student names
have been printed, print the total number of students using the
following format:

Column 123456789012345678901234567890
Last navea in list
Total students:

*indicates that the integer value associated with this total should
be printed starting in this colum~n.



PIFGR~m aVERIEW
Student Transactions Problem

In-Line - Complex

This programn is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanent
file) the name and social security numb~er of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a commnand followed by, when needed, the student's name and social
security number. The commands are: 'A' = add a student in the proper
alphabetic location, %D' = drop a student, "I' = inquire about whether a
student is enrolled, and 'L' = list all students. "A', 'DI, an 'I'
require a student name and social security numrber; VL does not. The

* ~. format of the permanent file is: [column 1] blank, [column 2-36] name,
[column 37-451 social security numrber. The format of the transaction file
is: (columni 11 command, (colum 2-361 name, [column 37-451 social security
numrber. In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file

* and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN4

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions.* It is structured,
however, in that it does not contain CfI ' s", but rathe-r controls flow by
the use of "while," "repeat... until," *do" loops, etc.

MODIFICATION

The permanent file now contains some additional information about the
class of the student (freshman, sophomrore, junior, senior, graduate).
This information is contained in column 46 of each record in the permfile
as a number in character format.

1-= Freshman
2 - Sophomore
3 - Junior
4 - Senior
5 = Graduate.

Change the 'L' commnand so that when it prints the student list, it prints
the numbter representing class membership imediately following the SS
numrber (i *e.* with no spaces between the two.) In making this

Si modification, remember that the program should read in this new
information and preserve it for use in the transactions.

Column 12345678901234567890123456789012345678901234567890

example:
Anderson, Harry 0099811231

This is the numrber repre-
senting class membership



p,.

PROGRAM OVERVIEW
*" Student Transactions Problem

Object-Oriented - Simple

RQUIREDE1S

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the
permanent file) the name and social security number of each student
enrolled (in alphabetical order). Each day a transaction file is
created which contains a comnand followed by, when needed, the
student's name and social security number. The comands are: 'A' =
add a student in the proper alphabetic location, "D' = drop a student,
"I' = inquire about whether a student is enrolled, and L' = list all

* .students. "A', "D', and 'I' require a student name and social
security number; "L' does not. The format of the permanent file is:
[column 1] blank, [column 2-36] name, [colum 37-45] social security
number. The format of the transaction file is: [column 11 cmwmand,
[column 2-361 name, [column 37-45] social security number. In each
case, the social security number is written without spaces or
hyphens. The program reads the permanent file into a linked list in
main memry. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

40• DESIGN

This program was broken down into four main sections. The first
is the permanent file object, which contains the official list of all
students and their social security numbers (in alphabetical order).
The second is the transaction file object, which consists of all
requests of or alteration to the list which need to be done. The
third section, the linked list object, is a representation of all
students within the computer memory and which is acted upon by the
transaction file. And finally, the printer object outputs any
requested information, error messages, and a completion message once
the transaction file has been successfully processed.

MDIFICATION

The following should be added to the output. When doing the L'
coMnand, count the number of students, and after all the student names
have been printed, print the total number of students using the
following format:

Column 123456789012345678901234567890
Last name in list

Total students: *

* indicates that the integer value associated with this total should
be printed starting in this colum.

V

. .. ... ........ .-



r. PRO)GRAM OVERVIEW
Student Transact ions Problem
Object-Oriented - Complex

REQUIREM4ENS

This program is designed to update the registrar's listings for students at
a university. The registrar has on disk (called the permanent file) the name
and social security number of each student enrolled (in alph~abetical order).
Each day a transaction file is created which contains a command followed by,
when needed, the student's name and social security numb~er. The commnands are:
'A' = add a student in the proper alphabetic location, 'D' = drop a student,
'I' = inquire about whether a student is enrolled, and "L' = list all
students. **A', %D1, and "I' require a student name and social security number;
% L' does not. The format of the permanent file is: [column 1] blank, [column
2-36] name, (colu~mn 37-45] social security number. The format of the
transaction file is: (column 1] command, [column. 2-361 name, (column 37-45]
social security number. In each case, the social security number is written
without spaces or hyphens. The program reads the permanent file into a linked
list in main memry. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is finished,
the linked list is copied back to the permanent file.

DESIGN

This program was broken down into four main sections. The first is the
permanent file object, which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file object, which consists of all requests of or alteration to the
list which need to be done. The third section, the linked list object, is a
representation of all students within the computer memory and which is acted
upon by the transaction file. And finally, the printer object outputs any
requested information, error messages, and a completion message once the
transaction file has been successfully processed.

MOIFICATION

d 'The permanent file now contains some additional information about the class
of the student (freshman, sophomore, junior, senior, graduate). This
information is contained in colun 46 of each record in the permfile as a
number in character format.

1 = Fresman
* 2 = Sophouore

3 = Junior
4 = Senior
5 = Graduate.

* -Change the 'L' commnand so that when it prints the student list, it prints the
0 ~number representing class membership immediately following the SS number (i.e.

with no spaces between the two.) In making this modification, remembter that
the program should read in this new information and preserve it for use in the
transactions.

* Columni 12345678901234567890123456789012345678901234567890

* example:
Anderson, Harry 0099811231

This is the number representing
class membership



r~r'rrrrr rr r' rr r' * - .

S

S

4.,

TE~I1NICAL RE~R~S DISrRIBUI'ION LISI'
S

6*

'V

I-.

.4'.

'U



OFFICE OF NAVAL RESEARCH

:10 Engineering Psychology Program

TECHNICAL REPORTS DISTRIBUTION LIT

-"D

CAV Paul R. Chatelier
Office of the Deputy Under Secretary of Defense
OUSDRE (E&LS)
Pentagon, Room 3D129
Washington, DC 20301

Department of the Nav_

Engineering Psychology Program Information Sciences Division
S Office of the Naval Research Code 1133

Code 1142EP Office of Naval Research
800 North Quincy Street 800 North Quincy Street
Arlington, VA 22217-5000 (3 copies) Arlington, VA 22217-5000

Dr. Randall P. Schumaker CDR T. Jones
q NRL A.I. Center Code 125

Code 7510ical R&D Command Office of Naval Research
Naval Research Laboratory 800 North Quincy Street

" Washington, DC 20375-5000 Arlington, VA 22217-5000

Special Assistant for Marine Corps Matters Mr. John Davis
Code OOMC Combat Control Systems Department
Office of Naval Research Code 35
800 North Quincy Street Naval Underwater Systems Center
Arlington, VA 22217-5000 Newport, RI 02840

Human Factors Department CDR James Offutt
Code N-71 Office of the Secretary of Defense

4 Naval Training Systems Center StratNgic Defense Initiative
Orlando, FL 32813 Organization

Washington, DC 20301-7100

Director Mr. Norm Beck
Technical Information Division Combat Control Systems Department
Code 2627 Code 35
Naval Research Laboratory Naval Underwater Systems Center
Washington, DC 23075-5000 Newport, RI 02840

Dr. Michael Melich Human Factors Engineering
Communications Sciences Division Code 441
Code 7500 Naval Ocean System Center
Naval Research Laboratory San Diego, CA 92152
Washington, DC 23075-5000

-93-
'V

'- ~~~~~~~~~~~~~~~~~~~~~~~..".. ..- ,....... .... ... ,..... .- ,....... -. ...-. <. . -... ".- .". '". "-",



RD-AiGS 775 THE ROLE OF PROGRAM STRUCTURE IN SOFTWARRE MAINTENANCE /
(U) GEORGE MASON UNIV FAIRFAX VA DEPT OF PSYCHOLOGY
D A BOEHM-DAVIS ET AL. 29 MAY 86 TR-86-GMU-P~i

I UNCLASSIFIED N@688i4-85-K-8242 F/G 9/2 NL

S ENE



*1220

l- M -

I

"oi

9o

i. 4m

,9 o.9 .



De-art" nt of the Naw

Dr. Neil McAlister Dr. A. F. Norcio
Office of Chief of Naval Operations Ccmputer Sciences &Systm
Comnd and Control Code 7592
OP-094H Naval Research Laboratory
Washington, DC 20350 Washington, DC 20375-5000

Dr. Gary Foock Dr. A.L. Slafkosky
Operations Research Department Scientific Advisor
Naval Postgraduate School Ocmmadnt of the Marine Corps
Monterey, CA 93940 Washington, DC 20380

Dr. L. Ckmura CDR C. Hutchins
COeputer Sciences & System Code 55
Code 7592 Naval Postgraduate School
Naval Research Laboratory Monterey, CA 93940
Washington, DC 20375-5000

Dr. Stanley Collyer Comander
Office of Naval Technology Naval Air Systems Command
Code 222 Crew Station Design
800 North Quincy Street NVAIR 5313
Arlington, VA 22217-5000 Washington, DC 20361

Mr. Philip Andrews Aircrew Systems Branch
Naval Sea Systems Comand Systems Engineering Test

." AVSEA 61R Directorate
Washington, DC 20362 US Naval Test Center

Patuxent River, MD 20670

Dr. George Moeller Dr. Robert Blanchard
Human Factors Engineering Branch Code 71
Naval Submarine Base Navy Personnel Research and
Submarine Medical Research Laboratory Development Center
Groton, CT 06340 San Diego, CA 92152-6800

Mr. Jeff Grossman LT Dennis McBride
Human Factors Division, Code 71 Buan Factors Branch
Navy Personnel R & D Center Pacific Missle Test Center
San Diego, CA 92152-6800 Point Mugu, CA 93042

Dean of the Academic Departments CR W. Moroney
US Naval Academy Naval Air Development Center

":" Annapolis, MD 21402 Code 602
Warminster, PA 18974

mHumn Factors Branch Dr. Eugene E. Gloye
Code 3152 ONR Detacbuent

* - Naval Weapons Center 1030 East Green Street
China Lake, CA 93555 Pasadena, CA 91106-2485

-'* Dr. Steve Sacks Dr. Robert A. Fleming
Naval Electronics System Commnd uman Factors Support Group
Code 61R Naval Personnel R & D Center
Washington, DC 20363-5100 1411 South Fern Street

V"" Arlington, VA 22202

"p.. -94-
W" ..



*' D:epartment of the ArMy

* Dr. Edgar M. Johnson Technical Director
Technical Director US Army Human Engineering lab
US Army Research Institute Aberdeen Proving Ground, D 21005
Alexandria, VA 22333-5600

Director Dr. Milton S. Katz
-O Organizations & Systems Research Lab Director, Basic Research

US Army Research Institute Arny Research Institute
5001 Eisenhower Avenue 5001 Eisenhower Avenue
Alexandria, VA 22333-5600 Alexandria, VA 22333-5600

Deartment of the Air Force

Dr. Kenneth R. Boff Mr. Charles Bates, Director
AF AMI/HE Human Engineering Division
Wright-Patterson AFB, OH 45433 USAF AMRL/HES

Wright-Patterson AFB, OH 45433

Dr. Earl Alluisi Dr. Kenneth Gardner
Chief Scientist Applied Psychology Unit
,.KCCN Admiralty Marine Tech. Estab.
Brooks Air Force Base, TX 78235 Teddington, Middlesex TW1l OL

Other Goverment Agenies

Dr. M.C. Montemerlo Dr. Clinton Kelly
Information Sciences & Human Factors Defense Advanced Research
Code RC Projects Agency
NA 8S 1400 Wilson Blvd.
Washington, DC 20546 Arlington, VA 22209

Defense Technical Information Center
Cameron Station
Bldg. 5
Alexandria, VA 22314 (12 copies)

-95-
4P



Other O iati s

Dr. Jesse Orlansky Dr. Marvin Cohen
Institute for Defense Analyses Decision Science Consortium, Inc.
1801 N. Beauregard Street Suite 721
Alexandria, VA 22311 7700 Leesburg Pike

Falls Church, VA 22043

Dr. Scott Robertson Dr. William B. ROMs
Catholic University School of In trial &a System
Department of Psychology r oinsef ri
Washington, DC 20064 Georgia Institute of Technolog

Atlanta, Gh 30332

Dr. Stanley Deutsch Dr. Bruce Ham11
NaS-National Research Council The Johns Hopkins University
(O11F) Aplied Physics lab
2101 Constitution Avenue, NW Laurel, ND 20707
Washington, DC 20418

Ms. Denise Benel Dr. Richard Pew
Essex Corporation Bolt Beranek & Neman, Inc.
333 N. Fairfax Street 50 Moulton Street
Alexandria, VA 22314 Cawbridge, MA 02238

Dr. H. McI. Parsons
Essex Corporation
333 N. Fairfax Street
Alexandria, VA 22314

a,

.

@-7.;

-a, ;



- - . r;rrr.- - . A v ~ ~ .~ -*-~--~;~--~ I L.* AN ~ ~ M.1~p.

I.s~..

I

*1

0

I

L

-- .--.. ,

-- *.

a... -S S
S... ''.-'.


